|
import streamlit as st |
|
import cv2 |
|
from PIL import Image |
|
import numpy as np |
|
from ultralytics import YOLO |
|
|
|
|
|
model = YOLO('yolo/best.pt') |
|
|
|
st.title("YOLO Object Detection Web App") |
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
image = Image.open(uploaded_file) |
|
st.image(image, caption="Uploaded Image", use_column_width=True) |
|
st.write("Processing...") |
|
|
|
|
|
image_np = np.array(image) |
|
image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
results = model(image_cv) |
|
|
|
|
|
detected_image = np.squeeze(results.render()) |
|
|
|
|
|
st.image(detected_image, caption="Detected Image", use_column_width=True) |