Spaces:
Building
Building
import json | |
import os | |
from glob import glob | |
from datetime import datetime, timezone | |
import numpy as np | |
import pandas as pd | |
from src.display.formatting import styled_error, styled_message, styled_warning | |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, RESULTS_REPO | |
from src.submission.check_validity import ( | |
already_submitted_models, | |
check_model_card, | |
get_model_size, | |
is_model_on_hub, | |
) | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS | |
) | |
REQUESTED_MODELS = None | |
USERS_TO_SUBMISSION_DATES = None | |
def add_new_eval( | |
eval_name: str, | |
upload: object, | |
precision: str, | |
hf_model_id: str, | |
contact_email: str | |
): | |
with open(upload, mode="r") as f: | |
data = json.load(f) | |
results = data['results'] | |
acc_keys = ['exact_match,none', 'exact_match,flexible-extract', 'exact_match,strict-match'] | |
ret = { | |
'eval_name': eval_name, | |
'precision': precision, | |
'hf_model_id': hf_model_id, | |
'contact_email': contact_email | |
} | |
for k, v in results.items(): | |
for acc_k in acc_keys: | |
if acc_k in v and k in BENCHMARK_COLS: | |
ret[k] = v[acc_k] | |
#validation | |
for k,v in ret.items(): | |
if k in ['eval_name', 'precision', 'hf_model_id', 'contact_email']: | |
continue | |
if k not in BENCHMARK_COLS: | |
print(f"Missing: {k}") | |
return styled_error(f'Missing: {k}') | |
if len(BENCHMARK_COLS) != len(ret) - 4: | |
print(f"Missing columns") | |
return styled_error(f'Missing columns') | |
# TODO add complex validation | |
#print(results.keys()) | |
#print(BENCHMARK_COLS) | |
#for input_col in results.keys(): | |
# if input_col not in BENCHMARK_COLS: | |
# print(input_col) | |
# return styled_error(f'Missing: {input_col}') | |
#ret.update({i:j['acc,none'] for i,j in results.items()}) | |
# fake data for testing... | |
#ret.update({i:round(np.random.normal(1, 0.5, 1)[0], 2) for i,j in results.items()}) | |
user_name = "czechbench_leaderboard" | |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
existing_eval_names = [] | |
for fname in glob(f"{OUT_DIR}/*.json"): | |
with open(fname, mode="r") as f: | |
existing_eval = json.load(f) | |
existing_eval_names.append(existing_eval['eval_name']) | |
if ret['eval_name'] in existing_eval_names: | |
print(f"Model name {ret['eval_name']} is used!") | |
return styled_error(f"Model name {ret['eval_name']} is used!") | |
out_path = f"{OUT_DIR}/{eval_name}_eval_request.json" | |
with open(out_path, "w") as f: | |
f.write(json.dumps(ret)) | |
print("Uploading eval file") | |
print("path_or_fileobj: ", out_path) | |
print("path_in_repo: ",out_path.split("eval-queue/")[1]) | |
print("repo_id: ", RESULTS_REPO) | |
print("repo_type: ", "dataset") | |
response = API.upload_file( | |
path_or_fileobj=out_path, | |
path_in_repo=out_path.split("eval-queue/")[1], | |
repo_id=RESULTS_REPO, | |
repo_type="dataset", | |
commit_message=f"Add {eval_name} to eval queue", | |
) | |
""" | |
global REQUESTED_MODELS | |
global USERS_TO_SUBMISSION_DATES | |
if not REQUESTED_MODELS: | |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | |
user_name = "" | |
model_path = model | |
if "/" in model: | |
user_name = model.split("/")[0] | |
model_path = model.split("/")[1] | |
precision = precision.split(" ")[0] | |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
if model_type is None or model_type == "": | |
return styled_error("Please select a model type.") | |
# Does the model actually exist? | |
if revision == "": | |
revision = "main" | |
# Is the model on the hub? | |
if weight_type in ["Delta", "Adapter"]: | |
base_model_on_hub, error, _ = is_model_on_hub( | |
model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True | |
) | |
if not base_model_on_hub: | |
return styled_error(f'Base model "{base_model}" {error}') | |
if not weight_type == "Adapter": | |
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True) | |
if not model_on_hub: | |
return styled_error(f'Model "{model}" {error}') | |
# Is the model info correctly filled? | |
try: | |
model_info = API.model_info(repo_id=model, revision=revision) | |
except Exception: | |
return styled_error("Could not get your model information. Please fill it up properly.") | |
model_size = get_model_size(model_info=model_info, precision=precision) | |
# Were the model card and license filled? | |
try: | |
license = model_info.cardData["license"] | |
except Exception: | |
return styled_error("Please select a license for your model") | |
modelcard_OK, error_msg = check_model_card(model) | |
if not modelcard_OK: | |
return styled_error(error_msg) | |
# Seems good, creating the eval | |
print("Adding new eval") | |
eval_entry = { | |
"model": model, | |
"base_model": base_model, | |
"revision": revision, | |
"precision": precision, | |
"weight_type": weight_type, | |
"status": "PENDING", | |
"submitted_time": current_time, | |
"model_type": model_type, | |
"likes": model_info.likes, | |
"params": model_size, | |
"license": license, | |
} | |
# Check for duplicate submission | |
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: | |
return styled_warning("This model has been already submitted.") | |
print("Creating eval file") | |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
os.makedirs(OUT_DIR, exist_ok=True) | |
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" | |
with open(out_path, "w") as f: | |
f.write(json.dumps(eval_entry)) | |
print("Uploading eval file") | |
API.upload_file( | |
path_or_fileobj=out_path, | |
path_in_repo=out_path.split("eval-queue/")[1], | |
repo_id=QUEUE_REPO, | |
repo_type="dataset", | |
commit_message=f"Add {model} to eval queue", | |
) | |
# Remove the local file | |
os.remove(out_path) | |
""" | |
return styled_message( | |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | |
), "", "", "", "" | |