File size: 7,549 Bytes
df66f6e
 
8fae53c
2a5f9fb
657d04f
535d0d5
df66f6e
657d04f
2a5f9fb
 
df66f6e
 
 
2a5f9fb
 
657d04f
 
6344c55
657d04f
 
 
976f398
 
2a5f9fb
ec84a57
2a5f9fb
657d04f
ebe77ac
 
 
50e453b
 
2a5f9fb
0e88066
4ac8818
 
 
 
 
 
 
 
 
 
 
50e453b
daf8b12
 
 
0e88066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6344c55
0e88066
 
 
 
 
6344c55
0e88066
4ac8818
0e88066
6344c55
0e88066
4ac8818
0e88066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac8818
0e88066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe77ac
0e88066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe77ac
 
0e88066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec84a57
2a5f9fb
0e88066
 
 
 
 
4ac8818
0e88066
 
4ac8818
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import json
import os
from glob import glob
from datetime import datetime, timezone
import numpy as np
import pandas as pd
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, RESULTS_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)

from src.display.utils import (
    BENCHMARK_COLS,
    BENCHMARK_COL_IDS,
    COLS
)

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None


def add_new_eval(
    eval_name: str,
    upload: object,
    precision: str,
    hf_model_id: str,
    contact_email: str,
    captcha_ok: bool,
):
    try:
        if not eval_name:
            return styled_error("Please provide a model name.")
        
        if not precision:
            return styled_error("Please select precision.")
        
        if not contact_email:
            return styled_error("Please provide your contact email.")
        
        if not upload:
            return styled_error("Please upload a results file.")
        
        if not captcha_ok:
            return styled_error("Please prove you are a human!")
        
        with open(upload, mode="r") as f:
            data = json.load(f)    
        
        results = data['results']

        acc_keys = ['exact_match,none', 'exact_match,flexible-extract', 'exact_match,strict-match']

        ret = {
            'eval_name': eval_name,
            'precision': precision,
            'hf_model_id': hf_model_id,
            'contact_email': contact_email
            }

        for k, v in results.items():
            for acc_k in acc_keys:
                if acc_k in v and k in BENCHMARK_COL_IDS:
                    ret[k] = v[acc_k]    
        #validation
        for k,v in ret.items():
            if k in ['eval_name', 'precision', 'hf_model_id', 'contact_email']:
                continue
            if k not in BENCHMARK_COL_IDS:
                print(f"Missing: {k}")
                return styled_error(f'Missing: {k}')

        if len(BENCHMARK_COL_IDS) != len(ret) - 4:
            print(f"Missing columns")
            return styled_error(f'Missing result entries')

        # TODO add complex validation
        #print(results.keys())
        #print(BENCHMARK_COLS)
        #for input_col in results.keys():
        #    if input_col not in BENCHMARK_COLS:
        #        print(input_col)
        #        return styled_error(f'Missing: {input_col}')
        #ret.update({i:j['acc,none'] for i,j in results.items()})
        # fake data for testing...
        #ret.update({i:round(np.random.normal(1, 0.5, 1)[0], 2) for i,j in results.items()})
        
        user_name = "czechbench_leaderboard"
        OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"

        existing_eval_names = []
        for fname in glob(f"{OUT_DIR}/*.json"):
            with open(fname, mode="r") as f:
                existing_eval = json.load(f)
            existing_eval_names.append(existing_eval['eval_name'])

        if ret['eval_name'] in existing_eval_names:
            print(f"Model name {ret['eval_name']} is used!")
            return styled_error(f"Model name {ret['eval_name']} is used!")

        out_path = f"{OUT_DIR}/{eval_name}_eval_request.json"

        with open(out_path, "w") as f:
            f.write(json.dumps(ret))


        print("Uploading eval file")

        print("path_or_fileobj: ", out_path)
        print("path_in_repo: ",out_path.split("eval-queue/")[1])
        print("repo_id: ", RESULTS_REPO)
        print("repo_type: ", "dataset")

        response = API.upload_file(
            path_or_fileobj=out_path,
            path_in_repo=out_path.split("eval-queue/")[1],
            repo_id=RESULTS_REPO,
            repo_type="dataset",
            commit_message=f"Add {eval_name} to eval queue",
        )

        """
        global REQUESTED_MODELS
        global USERS_TO_SUBMISSION_DATES
        if not REQUESTED_MODELS:
            REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

        user_name = ""
        model_path = model
        if "/" in model:
            user_name = model.split("/")[0]
            model_path = model.split("/")[1]

        precision = precision.split(" ")[0]
        current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

        if model_type is None or model_type == "":
            return styled_error("Please select a model type.")

        # Does the model actually exist?
        if revision == "":
            revision = "main"

        # Is the model on the hub?
        if weight_type in ["Delta", "Adapter"]:
            base_model_on_hub, error, _ = is_model_on_hub(
                model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True
            )
            if not base_model_on_hub:
                return styled_error(f'Base model "{base_model}" {error}')

        if not weight_type == "Adapter":
            model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
            if not model_on_hub:
                return styled_error(f'Model "{model}" {error}')

        # Is the model info correctly filled?
        try:
            model_info = API.model_info(repo_id=model, revision=revision)
        except Exception:
            return styled_error("Could not get your model information. Please fill it up properly.")

        model_size = get_model_size(model_info=model_info, precision=precision)

        # Were the model card and license filled?
        try:
            license = model_info.cardData["license"]
        except Exception:
            return styled_error("Please select a license for your model")

        modelcard_OK, error_msg = check_model_card(model)
        if not modelcard_OK:
            return styled_error(error_msg)

        # Seems good, creating the eval
        print("Adding new eval")

        eval_entry = {
            "model": model,
            "base_model": base_model,
            "revision": revision,
            "precision": precision,
            "weight_type": weight_type,
            "status": "PENDING",
            "submitted_time": current_time,
            "model_type": model_type,
            "likes": model_info.likes,
            "params": model_size,
            "license": license,
        }

        # Check for duplicate submission
        if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
            return styled_warning("This model has been already submitted.")

        print("Creating eval file")
        OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
        os.makedirs(OUT_DIR, exist_ok=True)
        out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"

        with open(out_path, "w") as f:
            f.write(json.dumps(eval_entry))

        print("Uploading eval file")
        API.upload_file(
            path_or_fileobj=out_path,
            path_in_repo=out_path.split("eval-queue/")[1],
            repo_id=QUEUE_REPO,
            repo_type="dataset",
            commit_message=f"Add {model} to eval queue",
        )

        # Remove the local file
        os.remove(out_path)
        """
        return styled_message(
            "Your results have been successfully submitted. They will be added to the leaderboard upon verification."
        )
    
    except Exception as e:
        return styled_error(f"An error occurred: {e}")