File size: 8,455 Bytes
9d22eee
2a5f9fb
 
df66f6e
 
efeee6d
 
ec84a57
9d22eee
 
 
314f91a
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
ec84a57
efeee6d
9d22eee
657d04f
9d22eee
 
 
ec84a57
9d22eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657d04f
 
2b8e93d
 
bc7fa0c
83a0ab6
b2e7d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33ce85b
9d22eee
 
 
2a5f9fb
ec84a57
b2e7d0b
 
 
f7e666c
b2e7d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efeee6d
2a5f9fb
 
 
 
 
 
 
 
 
ec84a57
efeee6d
2a5f9fb
9d22eee
2a5f9fb
9833cdb
ec84a57
2a5f9fb
 
 
9d22eee
 
 
 
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec84a57
9d22eee
 
 
 
 
ec84a57
9d22eee
0563bff
1cf9edb
 
9d22eee
 
 
 
 
 
 
 
1cf9edb
 
 
 
 
9d22eee
 
 
1cf9edb
9d22eee
1cf9edb
9d22eee
 
 
0563bff
2a5f9fb
ec84a57
2a5f9fb
 
 
 
 
 
 
 
 
cd24b99
6344c55
2a5f9fb
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.display.about import Tasks


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dummy: bool = False


## Leaderboard columns
auto_eval_column_dict = []
"""
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
"""


auto_eval_column_dict.append(["eval_name", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)])
auto_eval_column_dict.append(["hf_model_id", ColumnContent, ColumnContent("Model URL", "str", False)])
auto_eval_column_dict.append(["agree_cs", ColumnContent, ColumnContent("AGREE", "number", True)])
auto_eval_column_dict.append(["anli_cs", ColumnContent, ColumnContent("ANLI", "number", True)])
auto_eval_column_dict.append(["arc_challenge_cs", ColumnContent, ColumnContent("ARC-Challenge", "number", True)])
auto_eval_column_dict.append(["arc_easy_cs", ColumnContent, ColumnContent("ARC-Easy", "number", True)])
auto_eval_column_dict.append(["belebele_cs", ColumnContent, ColumnContent("Belebele", "number", True)])
auto_eval_column_dict.append(["ctkfacts_cs", ColumnContent, ColumnContent("CTKFacts", "number", True)])
auto_eval_column_dict.append(["czechnews_cs", ColumnContent, ColumnContent("Czech News", "number", True)])
auto_eval_column_dict.append(["fb_comments_cs", ColumnContent, ColumnContent("Facebook Comments", "number", True)])
auto_eval_column_dict.append(["gsm8k_cs", ColumnContent, ColumnContent("GSM8K", "number", True)])
auto_eval_column_dict.append(["klokanek_cs", ColumnContent, ColumnContent("Klokanek", "number", True)])
auto_eval_column_dict.append(["mall_reviews_cs", ColumnContent, ColumnContent("Mall Reviews", "number", True)])
auto_eval_column_dict.append(["mmlu_cs", ColumnContent, ColumnContent("MMLU", "number", True)])
auto_eval_column_dict.append(["sqad_cs", ColumnContent, ColumnContent("SQAD", "number", True)])
auto_eval_column_dict.append(["subjectivity_cs", ColumnContent, ColumnContent("Subjectivity", "number", True)])
auto_eval_column_dict.append(["truthfulqa_cs", ColumnContent, ColumnContent("TruthfulQA", "number", True)])


# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


HEADER_MAP = {
    "eval_name": "Model",
    "precision": "Precision",
    "hf_model_id": "Model URL",
    "agree_cs": "AGREE",
    "anli_cs": "ANLI",
    "arc_challenge_cs": "ARC-Challenge",
    "arc_easy_cs": "ARC-Easy",
    "belebele_cs": "Belebele",
    "ctkfacts_cs": "CTKFacts",
    "czechnews_cs": "Czech News",
    "fb_comments_cs": "Facebook Comments",
    "gsm8k_cs": "GSM8K",
    "klokanek_cs": "Klokanek",
    "mall_reviews_cs": "Mall Reviews",
    "mmlu_cs": "MMLU",
    "sqad_cs": "SQAD",
    "subjectivity_cs": "Subjectivity",
    "truthfulqa_cs": "TruthfulQA",
}


## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟢")
    FT = ModelDetails(name="fine-tuned", symbol="🔶")
    IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "🔶" in type:
            return ModelType.FT
        if "pretrained" in type or "🟢" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "⭕" in type:
            return ModelType.IFT
        return ModelType.Unknown


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")


class Precision(Enum):
    other = ModelDetails("other")
    float64 = ModelDetails("float64")
    float32 = ModelDetails("float32")
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    qt_8bit = ModelDetails("8bit")
    qt_4bit = ModelDetails("4bit")
    qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float64", "torch.double" ,"float64"]:
            return Precision.float64
        if precision in ["torch.float32", "torch.float" ,"float32"]:
            return Precision.tfloat32
        if precision in ["torch.float16", "torch.half", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["8bit", "int8"]:
            return Precision.qt_8bit
        if precision in ["4bit", "int4"]:
            return Precision.qt_4bit
        if precision in ["GPTQ", "None"]:
            return Precision.qt_GPTQ
        return Precision.other


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [HEADER_MAP[t.value.col_name] for t in Tasks]
BENCHMARK_COL_IDS = [t.value.col_name for t in Tasks]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}