File size: 52,224 Bytes
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
e118086
 
 
 
 
eff2de4
e118086
 
 
 
 
eff2de4
e118086
 
 
 
 
 
 
eff2de4
e118086
eff2de4
 
 
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
e118086
eff2de4
 
 
 
 
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
e118086
 
 
 
 
 
eff2de4
e118086
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
 
 
 
 
 
 
 
 
 
 
1bf5e80
e118086
 
 
 
eff2de4
e118086
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
'''
HEART Gradio Example App

To run: 
- clone the repository
- execute: gradio examples/gradio_app.py or python examples/gradio_app.py
- navigate to local URL e.g. http://127.0.0.1:7860
'''

import torch
import numpy as np
import pandas as pd
# from carbon_theme import Carbon

import gradio as gr
import os

css = """
.input-image { margin: auto !important }
.small-font span{
 font-size: 0.6em;
}
.df-padding {
    padding-left: 50px !important;
    padding-right: 50px !important;
}
"""

def extract_predictions(predictions_, conf_thresh):
    coco_labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 
        'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 
        'teddy bear', 'hair drier', 'toothbrush']
    # Get the predicted class
    predictions_class = [coco_labels[i] for i in list(predictions_["labels"])]
    #  print("\npredicted classes:", predictions_class)
    if len(predictions_class) < 1:
        return [], [], []
    # Get the predicted bounding boxes
    predictions_boxes = [[(i[0], i[1]), (i[2], i[3])] for i in list(predictions_["boxes"])]

    # Get the predicted prediction score
    predictions_score = list(predictions_["scores"])
    # print("predicted score:", predictions_score)

    # Get a list of index with score greater than threshold
    threshold = conf_thresh
    predictions_t = [predictions_score.index(x) for x in predictions_score if x > threshold]
    if len(predictions_t) > 0:
        predictions_t = predictions_t  # [-1] #indices where score over threshold
    else:
        # no predictions esxceeding threshold
        return [], [], []
    # predictions in score order
    predictions_boxes = [predictions_boxes[i] for i in predictions_t]
    predictions_class = [predictions_class[i] for i in predictions_t]
    predictions_scores = [predictions_score[i] for i in predictions_t]
    return predictions_class, predictions_boxes, predictions_scores

def plot_image_with_boxes(img, boxes, pred_cls, title):
    import cv2  
    text_size = 1
    text_th = 2
    rect_th = 1

    sections = []
    for i in range(len(boxes)):
        cv2.rectangle(img, (int(boxes[i][0][0]), int(boxes[i][0][1])), (int(boxes[i][1][0]), int(boxes[i][1][1])),
                      color=(0, 255, 0), thickness=rect_th)
        # Write the prediction class
        cv2.putText(img, pred_cls[i], (int(boxes[i][0][0]), int(boxes[i][0][1])), cv2.FONT_HERSHEY_SIMPLEX, text_size,
                    (0, 255, 0), thickness=text_th)
        sections.append( ((int(boxes[i][0][0]),
                           int(boxes[i][0][1]),
                           int(boxes[i][1][0]), 
                           int(boxes[i][1][1])), (pred_cls[i])) )
    

    return img.astype(np.uint8)
    
def filter_boxes(predictions, conf_thresh):
    dictionary = {}

    boxes_list = []
    scores_list = []
    labels_list = []

    for i in range(len(predictions[0]["boxes"])):
        score = predictions[0]["scores"][i]
        if score >= conf_thresh:
            boxes_list.append(predictions[0]["boxes"][i])
            scores_list.append(predictions[0]["scores"][[i]])
            labels_list.append(predictions[0]["labels"][[i]])
            
    dictionary["boxes"] = np.vstack(boxes_list)
    dictionary["scores"] = np.hstack(scores_list)
    dictionary["labels"] = np.hstack(labels_list)

    y = [dictionary]

    return y

def basic_cifar10_model():
    '''
    Load an example CIFAR10 model
    '''
    from heart.estimators.classification.pytorch import JaticPyTorchClassifier
    
    labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
    path = './'
    class Model(torch.nn.Module):
            """
            Create model for pytorch.
            Here the model does not use maxpooling. Needed for certification tests.
            """

            def __init__(self):
                super(Model, self).__init__()

                self.conv = torch.nn.Conv2d(
                    in_channels=3, out_channels=16, kernel_size=(4, 4), dilation=(1, 1), padding=(0, 0), stride=(3, 3)
                )

                self.fullyconnected = torch.nn.Linear(in_features=1600, out_features=10)

                self.relu = torch.nn.ReLU()

                w_conv2d = np.load(
                    os.path.join(
                        os.path.dirname(path),
                        "utils/resources/models",
                        "W_CONV2D_NO_MPOOL_CIFAR10.npy",
                    )
                )
                b_conv2d = np.load(
                    os.path.join(
                        os.path.dirname(path),
                        "utils/resources/models",
                        "B_CONV2D_NO_MPOOL_CIFAR10.npy",
                    )
                )
                w_dense = np.load(
                    os.path.join(
                        os.path.dirname(path),
                        "utils/resources/models",
                        "W_DENSE_NO_MPOOL_CIFAR10.npy",
                    )
                )
                b_dense = np.load(
                    os.path.join(
                        os.path.dirname(path),
                        "utils/resources/models",
                        "B_DENSE_NO_MPOOL_CIFAR10.npy",
                    )
                )

                self.conv.weight = torch.nn.Parameter(torch.Tensor(w_conv2d))
                self.conv.bias = torch.nn.Parameter(torch.Tensor(b_conv2d))
                self.fullyconnected.weight = torch.nn.Parameter(torch.Tensor(w_dense))
                self.fullyconnected.bias = torch.nn.Parameter(torch.Tensor(b_dense))

            # pylint: disable=W0221
            # disable pylint because of API requirements for function
            def forward(self, x):
                """
                Forward function to evaluate the model
                :param x: Input to the model
                :return: Prediction of the model
                """
                x = self.conv(x)
                x = self.relu(x)
                x = x.reshape(-1, 1600)
                x = self.fullyconnected(x)
                return x

    # Define the network
    model = Model()

    # Define a loss function and optimizer
    loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

    # Get classifier
    jptc = JaticPyTorchClassifier(
        model=model, loss=loss_fn, optimizer=optimizer, input_shape=(3, 32, 32), nb_classes=10, clip_values=(0, 1), labels=labels
    )
    return jptc

def det_evasion_evaluate(*args):
    '''
    Run a detection task evaluation
    '''
    
    attack = args[0]
    model_type = args[1]
    
    box_thresh = args[-3]
    dataset_type = args[-2]
    image = args[-1]
    
    if dataset_type == "COCO":
        from torchvision.transforms import transforms
        import requests
        from PIL import Image
        NUMBER_CHANNELS = 3
        INPUT_SHAPE = (NUMBER_CHANNELS, 640, 640)

        transform = transforms.Compose([
                transforms.Resize(INPUT_SHAPE[1], interpolation=transforms.InterpolationMode.BICUBIC),
                transforms.CenterCrop(INPUT_SHAPE[1]),
                transforms.ToTensor()
            ])

        urls = ['http://images.cocodataset.org/val2017/000000039769.jpg',
        'http://images.cocodataset.org/val2017/000000397133.jpg',
        'http://images.cocodataset.org/val2017/000000037777.jpg',
        'http://images.cocodataset.org/val2017/000000454661.jpg',
        'http://images.cocodataset.org/val2017/000000094852.jpg']

        coco_images = []
        for url in urls:
            im = Image.open(requests.get(url, stream=True).raw)
            im = transform(im).numpy()
            coco_images.append(im)
        image = np.array(coco_images)*255  
        
    if model_type == "YOLOv5":
        from heart.estimators.object_detection.pytorch_yolo import JaticPyTorchYolo
        coco_labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
            'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
            'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
            'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
            'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
            'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 
            'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 
            'teddy bear', 'hair drier', 'toothbrush']
        detector = JaticPyTorchYolo(device_type='cpu',
                            input_shape=(3, 640, 640),
                            clip_values=(0, 255), 
                            attack_losses=("loss_total", "loss_cls",
                                        "loss_box",
                                        "loss_obj"),
                            labels=coco_labels)
    
    if attack=="PGD":
        
        from art.attacks.evasion import ProjectedGradientDescent
        from heart.attacks.attack import JaticAttack
        from heart.metrics import AccuracyPerturbationMetric
        from torch.nn.functional import softmax
        from maite.protocols import HasDataImage, is_typed_dict
        
        pgd_attack = ProjectedGradientDescent(estimator=detector, max_iter=args[7], eps=args[8],
                                                 eps_step=args[9], targeted=args[10]!="")
        attack = JaticAttack(pgd_attack)
        
        benign_output = detector(image)
        
        dets = [{'boxes': benign_output.boxes[i],
            'scores': benign_output.scores[i],
            'labels': benign_output.labels[i]} for i in range(len(image))]

        y = [filter_boxes([t], 0.8)[0] for t in dets]
        if args[10]!="":
            data = {'image': image[[0]], 'label': y[-1:]}
        else:
            data = image
        
        
        output = attack.run_attack(data=data)
        adv_output = detector(output.adversarial_examples)
        out_imgs = []
        for i in range(len(output.adversarial_examples)):
            pred = {'boxes': adv_output.boxes[i],
                    'scores': adv_output.scores[i],
                    'labels': adv_output.labels[i]}
            preds_orig = extract_predictions(pred, box_thresh)
            out_img = plot_image_with_boxes(img=output.adversarial_examples[i].transpose(1,2,0).copy(),
                                        boxes=preds_orig[1], pred_cls=preds_orig[0], title="Detections")
            out_imgs.append(out_img)
    
        out_imgs_benign = []
        for i in range(len(image)):
            pred = {'boxes': benign_output.boxes[i],
                    'scores': benign_output.scores[i],
                    'labels': benign_output.labels[i]}
            preds_benign = extract_predictions(pred, box_thresh)
            out_img = plot_image_with_boxes(img=image[i].transpose(1,2,0).copy(),
                                        boxes=preds_benign[1], pred_cls=preds_benign[0], title="Detections")
            out_imgs_benign.append(out_img)
        
        
        image = []
        for i, img in enumerate(out_imgs_benign):
            image.append(img.astype(np.uint8))
        
        adv_imgs = []
        for i, img in enumerate(out_imgs):
            adv_imgs.append(img.astype(np.uint8))
        
        return [image, adv_imgs]

    elif attack=="Adversarial Patch":
        from art.attacks.evasion.adversarial_patch.adversarial_patch_pytorch import AdversarialPatchPyTorch
        from heart.attacks.attack import JaticAttack
        from heart.metrics import AccuracyPerturbationMetric
        from torch.nn.functional import softmax
        from maite.protocols import HasDataImage, is_typed_dict
        

        batch_size = 16
        scale_min = 0.3
        scale_max = 1.0
        rotation_max = 0
        learning_rate = 5000.

        patch_attack = AdversarialPatchPyTorch(estimator=detector, rotation_max=rotation_max, patch_location=(args[8], args[9]),
                            scale_min=scale_min, scale_max=scale_max, patch_type='circle',
                            learning_rate=learning_rate, max_iter=args[7], batch_size=batch_size,
                            patch_shape=(3, args[10], args[11]), verbose=False, targeted=args[-4]=="Yes")
        
        attack = JaticAttack(patch_attack)
        
        benign_output = detector(image)
        
        dets = [{'boxes': benign_output.boxes[i],
            'scores': benign_output.scores[i],
            'labels': benign_output.labels[i]} for i in range(len(image))]

        if args[-4]=="Yes":
            data = {'image': image, 'label':[dets[-1] for i in image]}
        else:
            data = {'image': image, 'label': dets}
        
        output = attack.run_attack(data=data)
        adv_output = detector(output.adversarial_examples)
        out_imgs = []
        for i in range(len(output.adversarial_examples)):
            pred = {'boxes': adv_output.boxes[i],
                    'scores': adv_output.scores[i],
                    'labels': adv_output.labels[i]}
            preds_orig = extract_predictions(pred, box_thresh)
            out_img = plot_image_with_boxes(img=output.adversarial_examples[i].transpose(1,2,0).copy(),
                                        boxes=preds_orig[1], pred_cls=preds_orig[0], title="Detections")
            out_imgs.append(out_img)
    
        out_imgs_benign = []
        for i in range(len(image)):
            pred = {'boxes': benign_output.boxes[i],
                    'scores': benign_output.scores[i],
                    'labels': benign_output.labels[i]}
            preds_benign = extract_predictions(pred, box_thresh)
            out_img = plot_image_with_boxes(img=image[i].transpose(1,2,0).copy(),
                                        boxes=preds_benign[1], pred_cls=preds_benign[0], title="Detections")
            out_imgs_benign.append(out_img)
        
        
        image = []
        for i, img in enumerate(out_imgs_benign):
            image.append(img.astype(np.uint8))
        
        adv_imgs = []
        for i, img in enumerate(out_imgs):
            adv_imgs.append(img.astype(np.uint8))
        
        return [image, adv_imgs]

def clf_evasion_evaluate(*args):
    '''
    Run a classification task evaluation
    '''
    
    attack = args[0]
    model_type = args[1]
    model_path = args[2]
    model_channels = args[3]
    model_height = args[4]
    model_width = args[5]
    model_clip = args[6]
    
    dataset_type = args[-4]
    dataset_path = args[-3]
    dataset_split = args[-2]
    image = args[-1]
    
    if dataset_type == "Example XView":
        from maite import load_dataset
        import torchvision
        jatic_dataset = load_dataset(
            provider="huggingface",
            dataset_name="CDAO/xview-subset-classification",
            task="image-classification",
            split="test",
        )
        IMAGE_H, IMAGE_W = 224, 224
        transform = torchvision.transforms.Compose(
            [  
                torchvision.transforms.Resize((IMAGE_H, IMAGE_W)),
                torchvision.transforms.ToTensor(),
            ]
        )  
        jatic_dataset.set_transform(lambda x: {"image": transform(x["image"]), "label": x["label"]})
        image = {'image': [i['image'].numpy() for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}   
    elif dataset_type=="huggingface":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider=dataset_type,
            dataset_name=dataset_path,
            task="image-classification",
            split=dataset_split,
            drop_labels=False
        )
        
        image = {'image': [i['image'] for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}
    elif dataset_type=="torchvision":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider=dataset_type,
            dataset_name=dataset_path,
            task="image-classification",
            split=dataset_split,
            root='./data/',
            download=True
        )
        image = {'image': [i['image'] for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}  
    elif dataset_type=="Example CIFAR10":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider="torchvision",
            dataset_name="CIFAR10",
            task="image-classification",
            split=dataset_split,
            root='./data/',
            download=True
        )
        image = {'image': [i['image'] for i in jatic_dataset][:100],
                'label': [i['label'] for i in jatic_dataset][:100]}  
        
    if model_type == "Example CIFAR10":
        jptc = basic_cifar10_model()  
    elif model_type == "Example XView":
        import torchvision
        from heart.estimators.classification.pytorch import JaticPyTorchClassifier
        classes = {
            0:'Building',
            1:'Construction Site',
            2:'Engineering Vehicle',
            3:'Fishing Vessel',
            4:'Oil Tanker',
            5:'Vehicle Lot'
        }
        model = torchvision.models.resnet18(False)
        num_ftrs = model.fc.in_features 
        model.fc = torch.nn.Linear(num_ftrs, len(classes.keys())) 
        model.load_state_dict(torch.load('./utils/resources/models/xview_model.pt'))
        _ = model.eval()
        jptc = JaticPyTorchClassifier(
            model=model, loss = torch.nn.CrossEntropyLoss(), input_shape=(3, 224, 224),
            nb_classes=len(classes), clip_values=(0, 1), labels=list(classes.values())
        )
    elif model_type == "torchvision":
        from maite.interop.torchvision import TorchVisionClassifier 
        from heart.estimators.classification.pytorch import JaticPyTorchClassifier
        
        clf = TorchVisionClassifier.from_pretrained(model_path)
        loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
        jptc = JaticPyTorchClassifier(
            model=clf._model, loss=loss_fn, input_shape=(model_channels, model_height, model_width), 
            nb_classes=len(clf._labels), clip_values=(0, model_clip), labels=clf._labels
        )
    elif model_type == "huggingface":
        from maite.interop.huggingface import HuggingFaceImageClassifier 
        from heart.estimators.classification.pytorch import JaticPyTorchClassifier
        
        clf = HuggingFaceImageClassifier.from_pretrained(model_path)
        loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
        jptc = JaticPyTorchClassifier(
            model=clf._model, loss=loss_fn, input_shape=(model_channels, model_height, model_width), 
            nb_classes=len(clf._labels), clip_values=(0, model_clip), labels=clf._labels
        )
    
    if attack=="PGD":
        from art.attacks.evasion.projected_gradient_descent.projected_gradient_descent_pytorch import ProjectedGradientDescentPyTorch
        from heart.attacks.attack import JaticAttack
        from heart.metrics import AccuracyPerturbationMetric
        from torch.nn.functional import softmax
        from maite.protocols import HasDataImage, is_typed_dict, ArrayLike
        
        pgd_attack = ProjectedGradientDescentPyTorch(estimator=jptc, max_iter=args[7], eps=args[8],
                                                 eps_step=args[9], targeted=args[10]!="")
        attack = JaticAttack(pgd_attack)
        
        preds = jptc(image)
        preds = softmax(torch.from_numpy(preds.logits), dim=1)
        labels = {}
        for i, label in enumerate(jptc.get_labels()):
            labels[label] = preds[0][i]
        
        if args[10]!="":
            if is_typed_dict(image, HasDataImage):
                data = {'image': image['image'], 'label': [args[10]]*len(image['image'])}
            else:
                data = {'image': image, 'label': [args[10]]}
        else:
            data = image
        
        x_adv = attack.run_attack(data=data)
        adv_preds = jptc(x_adv.adversarial_examples)
        adv_preds = softmax(torch.from_numpy(adv_preds.logits), dim=1)
        adv_labels = {}
        for i, label in enumerate(jptc.get_labels()):
            adv_labels[label] = adv_preds[0][i]
        
        metric = AccuracyPerturbationMetric()
        metric.update(jptc, jptc.device, image, x_adv.adversarial_examples)
        clean_accuracy, robust_accuracy, perturbation_added = metric.compute()
        metrics = pd.DataFrame([[clean_accuracy, robust_accuracy, perturbation_added]],
                               columns=['clean accuracy', 'robust accuracy', 'perturbation'])

        adv_imgs = [img.transpose(1,2,0) for img in x_adv.adversarial_examples]
        if is_typed_dict(image, HasDataImage):
            image = image['image']
        if not isinstance(image, list):
            image = [image]
            
        # in case where multiple images, use argmax to get the predicted label and add as caption
        if dataset_type!="local":
            temp = []
            for i, img in enumerate(image):
                if isinstance(img, ArrayLike):
                    temp.append((img.transpose(1,2,0), str(jptc.get_labels()[np.argmax(preds[i])]) ))
                else:
                    temp.append((img, str(jptc.get_labels()[np.argmax(preds[i])]) ))
            image = temp
            
            temp = []
            for i, img in enumerate(adv_imgs):
                temp.append((img, str(jptc.get_labels()[np.argmax(adv_preds[i])]) ))
            adv_imgs = temp
        
        return [image, labels, adv_imgs, adv_labels, clean_accuracy, robust_accuracy, perturbation_added]

    elif attack=="Adversarial Patch":
        from art.attacks.evasion.adversarial_patch.adversarial_patch_pytorch import AdversarialPatchPyTorch
        from heart.attacks.attack import JaticAttack
        from heart.metrics import AccuracyPerturbationMetric
        from torch.nn.functional import softmax
        from maite.protocols import HasDataImage, is_typed_dict, ArrayLike
        
        batch_size = 16
        scale_min = 0.3
        scale_max = 1.0
        rotation_max = 0
        learning_rate = 5000.
        max_iter = 2000
        patch_shape = (3, 14, 14)
        patch_location = (18,18)

        patch_attack = AdversarialPatchPyTorch(estimator=jptc, rotation_max=rotation_max, patch_location=(args[8], args[9]),
                            scale_min=scale_min, scale_max=scale_max, patch_type='square',
                            learning_rate=learning_rate, max_iter=args[7], batch_size=batch_size,
                            patch_shape=(3, args[10], args[11]), verbose=False, targeted=args[12]!="")
        
        attack = JaticAttack(patch_attack)
        
        preds = jptc(image)
        preds = softmax(torch.from_numpy(preds.logits), dim=1)
        labels = {}
        for i, label in enumerate(jptc.get_labels()):
            labels[label] = preds[0][i]
        
        if args[12]!="":
            if is_typed_dict(image, HasDataImage):
                data = {'image': image['image'], 'label': [args[12]]*len(image['image'])}
            else:
                data = {'image': image, 'label': [args[12]]}
        else:
            data = image
        
        attack_output = attack.run_attack(data=data)
        adv_preds = jptc(attack_output.adversarial_examples)
        adv_preds = softmax(torch.from_numpy(adv_preds.logits), dim=1)
        adv_labels = {}
        for i, label in enumerate(jptc.get_labels()):
            adv_labels[label] = adv_preds[0][i]
        
        metric = AccuracyPerturbationMetric()
        metric.update(jptc, jptc.device, image, attack_output.adversarial_examples)
        clean_accuracy, robust_accuracy, perturbation_added = metric.compute()
        metrics = pd.DataFrame([[clean_accuracy, robust_accuracy, perturbation_added]],
                               columns=['clean accuracy', 'robust accuracy', 'perturbation'])

        adv_imgs = [img.transpose(1,2,0) for img in attack_output.adversarial_examples]
        if is_typed_dict(image, HasDataImage):
            image = image['image']
        if not isinstance(image, list):
            image = [image]
            
        # in case where multiple images, use argmax to get the predicted label and add as caption
        if dataset_type!="local":
            temp = []
            for i, img in enumerate(image):
                
                if isinstance(img, ArrayLike):
                    temp.append((img.transpose(1,2,0), str(jptc.get_labels()[np.argmax(preds[i])]) ))
                else:
                    temp.append((img, str(jptc.get_labels()[np.argmax(preds[i])]) ))
                
            image = temp
            
            temp = []
            for i, img in enumerate(adv_imgs):
                temp.append((img, str(jptc.get_labels()[np.argmax(adv_preds[i])]) ))
            adv_imgs = temp
            
        patch, patch_mask = attack_output.adversarial_patch
        patch_image = ((patch) * patch_mask).transpose(1,2,0)
            
        return [image, labels, adv_imgs, adv_labels, clean_accuracy, robust_accuracy, patch_image]
            
def show_model_params(model_type):
    '''
    Show model parameters based on selected model type
    '''
    if model_type!="Example CIFAR10" and model_type!="Example XView":
        return gr.Column(visible=True)
    return gr.Column(visible=False)
    
def show_dataset_params(dataset_type):
    '''
    Show dataset parameters based on dataset type
    '''
    if dataset_type=="Example CIFAR10" or dataset_type=="Example XView":
        return [gr.Column(visible=False), gr.Row(visible=False), gr.Row(visible=False)]
    elif dataset_type=="local":
        return [gr.Column(visible=True), gr.Row(visible=True), gr.Row(visible=False)]
    return [gr.Column(visible=True), gr.Row(visible=False), gr.Row(visible=True)]
  
def pgd_show_label_output(dataset_type):
    '''
    Show PGD output component based on dataset type
    '''
    if dataset_type=="local":
        return [gr.Label(visible=True), gr.Label(visible=True), gr.Number(visible=False), gr.Number(visible=False), gr.Number(visible=True)]
    return [gr.Label(visible=False), gr.Label(visible=False), gr.Number(visible=True), gr.Number(visible=True), gr.Number(visible=True)]

def pgd_update_epsilon(clip_values):
    '''
    Update max value of PGD epsilon slider based on model clip values
    '''
    if clip_values == 255:
        return gr.Slider(minimum=0.0001, maximum=255, label="Epslion", value=55) 
    return gr.Slider(minimum=0.0001, maximum=1, label="Epslion", value=0.05) 

def patch_show_label_output(dataset_type):
    '''
    Show adversarial patch output components based on dataset type
    '''
    if dataset_type=="local":
        return [gr.Label(visible=True), gr.Label(visible=True), gr.Number(visible=False), gr.Number(visible=False), gr.Number(visible=True)]
    return [gr.Label(visible=False), gr.Label(visible=False), gr.Number(visible=True), gr.Number(visible=True), gr.Number(visible=True)]

def show_target_label_dataframe(dataset_type):
    if dataset_type == "Example CIFAR10":
        return gr.Dataframe(visible=True), gr.Dataframe(visible=False)
    elif dataset_type == "Example XView":
        return gr.Dataframe(visible=False), gr.Dataframe(visible=True)
    return gr.Dataframe(visible=False), gr.Dataframe(visible=False)
    
# e.g. To use a local alternative theme: carbon_theme = Carbon()
with gr.Blocks(css=css, theme='xiaobaiyuan/theme_brief') as demo:
    gr.Markdown("<h1>HEART Adversarial Robustness Gradio Example</h1>")
    
    with gr.Tab("Classification", elem_classes="task-tab"):
        gr.Markdown("Classifying images with a set of categories.")
        
        # Model and Dataset Selection
        with gr.Row():
            # Model and Dataset type e.g. Torchvision, HuggingFace, local etc.
            with gr.Column():
                model_type = gr.Radio(label="Model type", choices=["Example CIFAR10", "Example XView", "torchvision"],
                                    value="Example CIFAR10")
                dataset_type = gr.Radio(label="Dataset", choices=["Example CIFAR10", "Example XView", "local", "torchvision", "huggingface"],
                                    value="Example CIFAR10")
            # Model parameters e.g. RESNET, VIT, input dimensions, clipping values etc.
            with gr.Column(visible=False) as model_params:
                model_path = gr.Textbox(placeholder="URL", label="Model path")
                with gr.Row():
                    with gr.Column():
                        model_channels = gr.Textbox(placeholder="Integer, 3 for RGB images", label="Input Channels", value=3)
                    with gr.Column():
                        model_width = gr.Textbox(placeholder="Integer", label="Input Width", value=640)
                with gr.Row():
                    with gr.Column():
                        model_height = gr.Textbox(placeholder="Integer", label="Input Height", value=480)
                    with gr.Column():
                        model_clip = gr.Radio(choices=[1, 255], label="Pixel clip", value=1)
            # Dataset parameters e.g. Torchvision, HuggingFace, local etc. 
            with gr.Column(visible=False) as dataset_params:
                with gr.Row() as local_image:
                    image = gr.Image(sources=['upload'], type="pil", height=150, width=150, elem_classes="input-image")
                with gr.Row() as hosted_image:
                    dataset_path = gr.Textbox(placeholder="URL", label="Dataset path")
                    dataset_split = gr.Textbox(placeholder="test", label="Dataset split")
            
            model_type.change(show_model_params, model_type, model_params)
            dataset_type.change(show_dataset_params, dataset_type, [dataset_params, local_image, hosted_image])
        
        # Attack Selection
        with gr.Row():
            
            with gr.Tab("Info"):
                gr.Markdown("This is step 1. Select the type of attack for evaluation.")
                
            with gr.Tab("White Box"):
                gr.Markdown("White box attacks assume the attacker has __full access__ to the model.")
                
                with gr.Tab("Info"):
                    gr.Markdown("This is step 2. Select the type of white-box attack to evaluate.")
                
                with gr.Tab("Evasion"):
                    gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
                    
                    with gr.Tab("Info"):
                        gr.Markdown("This is step 3. Select the type of Evasion attack to evaluate.")
                    
                    with gr.Tab("Projected Gradient Descent"):
                        gr.Markdown("This attack uses PGD to identify adversarial examples.")
                        
                        
                        with gr.Row():
                            
                            with gr.Column(scale=1):
                                attack = gr.Textbox(visible=True, value="PGD", label="Attack", interactive=False)
                                max_iter = gr.Slider(minimum=1, maximum=20, label="Max iterations", value=10, step=1)
                                eps = gr.Slider(minimum=0.03, maximum=1, label="Epslion", value=0.03) 
                                eps_steps = gr.Slider(minimum=0.003, maximum=0.99, label="Epsilon steps", value=0.003) 
                                targeted = gr.Textbox(placeholder="Target label (integer)", label="Target")
                                with gr.Accordion("Target mapping", open=False):
                                    cifar_labels = gr.Dataframe(pd.DataFrame(['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'],
                                                                columns=['label']).rename_axis('target').reset_index(),
                                                                visible=True, elem_classes=["small-font", "df-padding"],
                                                                type="pandas",interactive=False)
                                    xview_labels = gr.Dataframe(pd.DataFrame(['Building', 'Construction Site', 'Engineering Vehicle', 'Fishing Vessel', 'Oil Tanker', 
                                                                            'Vehicle Lot'],
                                                                columns=['label']).rename_axis('target').reset_index(), 
                                                                visible=False, elem_classes=["small-font", "df-padding"],
                                                                type="pandas",interactive=False)
                                eval_btn_pgd = gr.Button("Evaluate")
                                model_clip.change(pgd_update_epsilon, model_clip, eps)
                                dataset_type.change(show_target_label_dataframe, dataset_type, [cifar_labels, xview_labels])
                                
                            # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                            with gr.Column(scale=2):
                                with gr.Row():
                                    with gr.Column():
                                        original_gallery = gr.Gallery(label="Original", preview=True, height=600)
                                        benign_output = gr.Label(num_top_classes=3, visible=False)
                                        clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
                                        
                                    with gr.Column():
                                        adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, height=600)
                                        adversarial_output = gr.Label(num_top_classes=3, visible=False)
                                        robust_accuracy = gr.Number(label="Robust Accuracy", precision=2)
                                        perturbation_added = gr.Number(label="Perturbation Added", precision=2)
                                        
                                dataset_type.change(pgd_show_label_output, dataset_type, [benign_output, adversarial_output, 
                                                                                     clean_accuracy, robust_accuracy, perturbation_added])
                                eval_btn_pgd.click(clf_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
                                                                             model_clip, max_iter, eps, eps_steps, targeted, 
                                                                             dataset_type, dataset_path, dataset_split, image],
                                                    outputs=[original_gallery, benign_output, adversarial_gallery, adversarial_output, clean_accuracy,
                                                             robust_accuracy, perturbation_added], api_name='patch')
                        
                        with gr.Row():
                            clear_btn = gr.ClearButton([image, targeted, original_gallery, benign_output, clean_accuracy,
                                                        adversarial_gallery, adversarial_output, robust_accuracy, perturbation_added])
                            
                    with gr.Tab("Adversarial Patch"):
                        gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.")
                        
                        with gr.Row():
                            
                            with gr.Column(scale=1):
                                attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False)
                                max_iter = gr.Slider(minimum=1, maximum=20, label="Max iterations", value=2, step=1)
                                x_location = gr.Slider(minimum=1, maximum=640, label="Location (x)", value=18, step=1) 
                                y_location = gr.Slider(minimum=1, maximum=480, label="Location (y)", value=18, step=1) 
                                patch_height = gr.Slider(minimum=1, maximum=640, label="Patch height", value=18, step=1) 
                                patch_width = gr.Slider(minimum=1, maximum=480, label="Patch width", value=18, step=1) 
                                targeted = gr.Textbox(placeholder="Target label (integer)", label="Target")
                                with gr.Accordion("Target mapping", open=False):
                                    cifar_labels = gr.Dataframe(pd.DataFrame(['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'],
                                                                columns=['label']).rename_axis('target').reset_index(),
                                                                visible=True, elem_classes=["small-font", "df-padding"],
                                                                type="pandas",interactive=False)
                                    xview_labels = gr.Dataframe(pd.DataFrame(['Building', 'Construction Site', 'Engineering Vehicle', 'Fishing Vessel', 'Oil Tanker', 
                                                                            'Vehicle Lot'],
                                                                columns=['label']).rename_axis('target').reset_index(), 
                                                                visible=False, elem_classes=["small-font", "df-padding"],
                                                                type="pandas",interactive=False)
                                eval_btn_patch = gr.Button("Evaluate")
                                model_clip.change()
                                dataset_type.change(show_target_label_dataframe, dataset_type, [cifar_labels, xview_labels])
                                
                            # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                            with gr.Column(scale=2):
                                with gr.Row():
                                    with gr.Column():
                                        original_gallery = gr.Gallery(label="Original", preview=True, height=600)
                                        benign_output = gr.Label(num_top_classes=3, visible=False)
                                        clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
                                        
                                    with gr.Column():
                                        adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, height=600)
                                        adversarial_output = gr.Label(num_top_classes=3, visible=False)
                                        robust_accuracy = gr.Number(label="Robust Accuracy", precision=2)
                                        patch_image = gr.Image(label="Adversarial Patch")
                                        
                                dataset_type.change(patch_show_label_output, dataset_type, [benign_output, adversarial_output, 
                                                                                      clean_accuracy, robust_accuracy, patch_image])
                                eval_btn_patch.click(clf_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
                                                                             model_clip, max_iter, x_location, y_location, patch_height, patch_width, targeted, 
                                                                             dataset_type, dataset_path, dataset_split, image],
                                                    outputs=[original_gallery, benign_output, adversarial_gallery, adversarial_output, clean_accuracy,
                                                             robust_accuracy, patch_image])
                        
                        with gr.Row():
                            clear_btn = gr.ClearButton([image, targeted, original_gallery, benign_output, clean_accuracy,
                                                        adversarial_gallery, adversarial_output, robust_accuracy, patch_image])
                        
                with gr.Tab("Poisoning"):
                    gr.Markdown("Coming soon.")
            
            with gr.Tab("Black Box"):
                gr.Markdown("Black box attacks assume the attacker __does not__ have full access to the model but can query it for predictions.")
                
                with gr.Tab("Info"):
                    gr.Markdown("This is step 2. Select the type of black-box attack to evaluate.")
                    
                with gr.Tab("Evasion"):
                    
                    gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
                    
                    with gr.Tab("Info"):
                        gr.Markdown("This is step 3. Select the type of Evasion attack to evaluate.")
                    
                    with gr.Tab("HopSkipJump"):
                        gr.Markdown("Coming soon.")
                    
                    with gr.Tab("Square Attack"):
                        gr.Markdown("Coming soon.")
                        
            with gr.Tab("AutoAttack"):
                gr.Markdown("Coming soon.")
            
            
    with gr.Tab("Object Detection"):
        gr.Markdown("Extracting objects from images and identifying their category.")
        
        # Model and Dataset Selection
        with gr.Row():
            # Model and Dataset type e.g. Torchvision, HuggingFace, local etc.
            with gr.Column():
                model_type = gr.Radio(label="Model type", choices=["YOLOv5"],
                                    value="YOLOv5")
                dataset_type = gr.Radio(label="Dataset", choices=["COCO",],
                                    value="COCO")
            
            model_type.change(show_model_params, model_type, model_params)
            dataset_type.change(show_dataset_params, dataset_type, [dataset_params, local_image])
        
        # Attack Selection
        with gr.Row():
            
            with gr.Tab("Info"):
                gr.Markdown("This is step 1. Select the type of attack for evaluation.")
                
            with gr.Tab("White Box"):
                gr.Markdown("White box attacks assume the attacker has __full access__ to the model.")
                
                with gr.Tab("Info"):
                    gr.Markdown("This is step 2. Select the type of white-box attack to evaluate.")
                
                with gr.Tab("Evasion"):
                    gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
                    
                    with gr.Tab("Info"):
                        gr.Markdown("This is step 3. Select the type of Evasion attack to evaluate.")
                    
                    with gr.Tab("Projected Gradient Descent"):
                        gr.Markdown("This attack uses PGD to identify adversarial examples.")
                        
                        
                        with gr.Row():
                            
                            with gr.Column(scale=1):
                                attack = gr.Textbox(visible=True, value="PGD", label="Attack", interactive=False)
                                max_iter = gr.Slider(minimum=1, maximum=10, label="Max iterations", value=4, step=1)
                                eps = gr.Slider(minimum=8, maximum=255, label="Epslion", value=8, step=1) 
                                eps_steps = gr.Slider(minimum=1, maximum=254, label="Epsilon steps", value=1, step=1) 
                                targeted = gr.Textbox(placeholder="Target label (integer)", label="Target")
                                det_threshold = gr.Slider(minimum=0.0, maximum=100, label="Detection threshold", value=0.2)
                                eval_btn_pgd = gr.Button("Evaluate")
                                model_clip.change(pgd_update_epsilon, model_clip, eps)
                                
                            # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                            with gr.Column(scale=3):
                                with gr.Row():
                                    with gr.Column():
                                        original_gallery = gr.Gallery(label="Original", preview=True, show_download_button=True, height=600)
                                        
                                    with gr.Column():
                                        adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, show_download_button=True, height=600)
                                        
                                eval_btn_pgd.click(det_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
                                                                             model_clip, max_iter, eps, eps_steps, targeted, 
                                                                             det_threshold, dataset_type, image],
                                                    outputs=[original_gallery, adversarial_gallery], api_name='patch')
                        
                        with gr.Row():
                            clear_btn = gr.ClearButton([image, original_gallery,
                                                        adversarial_gallery])
                            

                    
                    with gr.Tab("Adversarial Patch"):
                        gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.")
                        
                        with gr.Row():
                            
                            with gr.Column(scale=1):
                                attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False)
                                max_iter = gr.Slider(minimum=1, maximum=100, label="Max iterations", value=1, step=1)
                                x_location = gr.Slider(minimum=1, maximum=640, label="Location (x)", value=100, step=1) 
                                y_location = gr.Slider(minimum=1, maximum=480, label="Location (y)", value=100, step=1) 
                                patch_height = gr.Slider(minimum=1, maximum=640, label="Patch height", value=100, step=1) 
                                patch_width = gr.Slider(minimum=1, maximum=480, label="Patch width", value=100, step=1) 
                                targeted = gr.Radio(choices=['Yes', 'No'], value='No', label="Targeted")
                                det_threshold = gr.Slider(minimum=0.0, maximum=100, label="Detection threshold", value=0.2)
                                eval_btn_patch = gr.Button("Evaluate")
                                model_clip.change()
                                
                            # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                            with gr.Column(scale=3):
                                with gr.Row():
                                    with gr.Column():
                                        original_gallery = gr.Gallery(label="Original", preview=True, show_download_button=True, height=600)
                                        
                                    with gr.Column():
                                        adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, show_download_button=True, height=600)
                                        
                                dataset_type.change(patch_show_label_output, dataset_type, [adversarial_output, ])
                                eval_btn_patch.click(det_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
                                                                             model_clip, max_iter, x_location, y_location, patch_height, patch_width, targeted, 
                                                                             det_threshold,dataset_type, image],
                                                    outputs=[original_gallery, adversarial_gallery])
                        
                        with gr.Row():
                            clear_btn = gr.ClearButton([image, targeted, original_gallery,
                                                        adversarial_gallery])
                        
                with gr.Tab("Poisoning"):
                    gr.Markdown("Coming soon.")
            
            with gr.Tab("Black Box"):
                gr.Markdown("Black box attacks assume the attacker __does not__ have full access to the model but can query it for predictions.")
                
                with gr.Tab("Info"):
                    gr.Markdown("This is step 2. Select the type of black-box attack to evaluate.")
                    
                with gr.Tab("Evasion"):
                    
                    gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
                    
                    with gr.Tab("Info"):
                        gr.Markdown("This is step 3. Select the type of Evasion attack to evaluate.")
                    
                    with gr.Tab("HopSkipJump"):
                        gr.Markdown("Coming soon.")
                    
                    with gr.Tab("Square Attack"):
                        gr.Markdown("Coming soon.")
                        
            with gr.Tab("AutoAttack"):
                gr.Markdown("Coming soon.")

if __name__ == "__main__":

    import os, sys, subprocess

    # Huggingface does not support LFS via external https, disable smudge
    os.putenv('GIT_LFS_SKIP_SMUDGE', '1')

    HEART_USER=os.environ['HEART_USER']
    HEART_TOKEN=os.environ['HEART_TOKEN']

    HEART_INSTALL=f"git+https://{HEART_USER}:{HEART_TOKEN}@gitlab.jatic.net/jatic/ibm/hardened-extension-adversarial-robustness-toolbox.git"

    subprocess.run([sys.executable, '-m', 'pip', 'install', HEART_INSTALL])
    
    # during development, set debug=True
    demo.launch(debug=True)