Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import requests | |
from dotenv import load_dotenv | |
load_dotenv() | |
API_TOKEN = os.environ.get("API_TOKEN", None) | |
MODEL_URL = os.environ.get("MODEL_URL", None) | |
def evaluate(hotel_request: str): | |
resp = requests.post( | |
MODEL_URL, | |
json={"inputs": hotel_request}, | |
headers={"Authorization": f"Bearer {API_TOKEN}"}, | |
cookies=None, | |
timeout=10, | |
) | |
payload = resp.json() | |
text = payload[0]["generated_text"] | |
name, location, hotel, date = text.split("|") | |
return name, hotel, location, date | |
gr.Interface( | |
fn=evaluate, | |
inputs=[ | |
# gr.components.Textbox( | |
# lines=2, | |
# label="Instruction", | |
# placeholder="Tell me about alpacas.", | |
# ), | |
gr.components.Textbox(lines=2, label="Input", placeholder="Request for the Hotel"), | |
# gr.components.Slider( | |
# minimum=0, maximum=1, value=0.1, label="Temperature" | |
# ), | |
# gr.components.Slider( | |
# minimum=0, maximum=1, value=0.75, label="Top p" | |
# ), | |
# gr.components.Slider( | |
# minimum=0, maximum=100, step=1, value=40, label="Top k" | |
# ), | |
# gr.components.Slider( | |
# minimum=1, maximum=4, step=1, value=4, label="Beams" | |
# ), | |
# gr.components.Slider( | |
# minimum=1, maximum=2000, step=1, value=128, label="Max tokens" | |
# ), | |
# gr.components.Checkbox(label="Stream output"), | |
], | |
outputs=[ | |
gr.inputs.Textbox( | |
lines=1, | |
label="Guest Name", | |
), | |
gr.inputs.Textbox( | |
lines=1, | |
label="Hotel", | |
), | |
gr.inputs.Textbox( | |
lines=1, | |
label="Location", | |
), | |
gr.inputs.Textbox( | |
lines=1, | |
label="Date", | |
) | |
], | |
allow_flagging="never", | |
title="Falcon-LoRA", | |
description="Falcon-LoRA is a 1B-parameter LLM finetuned to follow instructions. It is trained on the [Hotel Requests](https://huggingface.co/datasets/MichaelAI23/hotel_requests) dataset.", # noqa: E501 | |
).queue().launch() #server_name="0.0.0.0", server_port=8080) |