Spaces:
Running
Running
File size: 10,092 Bytes
941a9ef 7366dc0 cea6930 7366dc0 ac578b5 4ec3cb6 ac578b5 cea6930 7366dc0 cea6930 7366dc0 cea6930 7366dc0 cea6930 4ec3cb6 cea6930 4ec3cb6 941a9ef 4ec3cb6 941a9ef 4ec3cb6 cea6930 4ec3cb6 cea6930 4ec3cb6 cea6930 4ec3cb6 cea6930 7366dc0 cea6930 7366dc0 4ec3cb6 7366dc0 4ec3cb6 7366dc0 4ec3cb6 7366dc0 ac578b5 941a9ef cea6930 941a9ef cea6930 4ec3cb6 cea6930 7366dc0 cea6930 7366dc0 4ec3cb6 7366dc0 4ec3cb6 7366dc0 4ec3cb6 8ded997 4ec3cb6 8ded997 ac578b5 941a9ef 411541a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import pandas as pd
import numpy as np
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
# Define constants and enums
# TITLE = "<h1>M-RewardBench Leaderboard</h1>"
TITLE = '''<h1>
<span style="font-variant: small-caps;">M-RewardBench</span>: Evaluating Reward Models in Multilingual Settings
</h1>'''
INTRODUCTION_TEXT = '''
Evaluating the chat, safety, reasoning, and translation capabilities of Multilingual Reward Models.
π [Paper](https://arxiv.org/pdf/2410.15522.pdf) | π» [Code](https://github.com/for-ai/m-rewardbench) | π€ [Dataset](https://hf.co/datasets/C4AI-Community/multilingual-reward-bench) | π [arXiv](https://arxiv.org/abs/2410.15522) | π [Leaderboard](https://c4ai-community-m-rewardbench.hf.space/)
π https://m-rewardbench.github.io/'''
# GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/export?gid=0&format=csv"
GOOGLE_SHEET_URLS = [
"https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/gviz/tq?tqx=out:csv&sheet=gt",
"https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/gviz/tq?tqx=out:csv&sheet=maple"
]
# ABOUT_TEXT = """
# <h1>
# <span style="font-variant: small-caps;">M-RewardBench</span>: Evaluating Reward Models in Multilingual Settings
# </h1>
# Welcome to M-RewardBench Leaderboard!"""
class AutoEvalColumn:
model = {
"name": "Model",
"type": "markdown",
"displayed_by_default": True,
"never_hidden": True,
}
model_type = {
"name": "MT",
"type": "markdown",
"displayed_by_default": True,
"never_hidden": True,
}
@classmethod
def add_columns_from_df(cls, df, columns):
for col in columns:
if col.lower() != 'model': # Skip if it's the model column since it's predefined
setattr(cls, col, {
"name": col,
"type": "markdown",
"displayed_by_default": True,
"never_hidden": False,
})
class AutoEvalColumnTranslation:
model = {
"name": "Model",
"type": "markdown",
"displayed_by_default": True,
"never_hidden": True,
}
model_type = {
"name": "MT",
"type": "markdown",
"displayed_by_default": True,
"never_hidden": True,
}
@classmethod
def add_columns_from_df(cls, df, columns):
for col in columns:
if col.lower() != 'model': # Skip if it's the model column since it's predefined
setattr(cls, col, {
"name": col,
"type": "markdown",
"displayed_by_default": True,
"never_hidden": False,
})
def get_result_data():
return pd.read_csv(GOOGLE_SHEET_URLS[0])
def get_translation_data():
return pd.read_csv(GOOGLE_SHEET_URLS[1])
def init_leaderboard(dataframe, df_class):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[
col["type"]
for col in df_class.__dict__.values()
if isinstance(col, dict)
],
select_columns=SelectColumns(
default_selection=[
col["name"]
for col in df_class.__dict__.values()
if isinstance(col, dict) and col["displayed_by_default"]
],
cant_deselect=[
col["name"]
for col in df_class.__dict__.values()
if isinstance(col, dict) and col.get("never_hidden", False)
],
label="Select Columns to Display:",
),
search_columns=["Model"],
interactive=False,
)
def format_model_link(row):
"""Format model name as HTML link if URL is available"""
model_name = row["Model"]
# url = row.get("URL", "")
# if pd.notna(url) and url.strip():
# return f'<a href="{url}" target="_blank">{model_name}</a>'
return model_name
lang_ids = "eng_Latn arb_Arab tur_Latn rus_Cyrl ces_Latn pol_Latn kor_Hang zho_Hans zho_Hant fra_Latn ell_Grek deu_Latn ron_Latn ita_Latn nld_Latn pes_Arab hin_Deva ukr_Cyrl por_Latn ind_Latn jpn_Jpan spa_Latn heb_Hebr vie_Latn"
emojis = "π’ π¬ π―"
model_types = {"Generative RM": "π¬", "DPO": "π―", "Sequence Classifier": "π’"}
from functools import partial
def format_with_color(val, min_val=50, max_val=100, scale=True):
"""
Formats a value with inline green color gradient CSS.
Returns an HTML string with bold, black text and muted green background.
"""
try:
val = float(val)
if pd.isna(val):
return str(val)
# Normalize value between 50 and 100 to 0-1 range
normalized = (val - min_val) / (max_val - min_val)
# print(normalized)
# Clamp value between 0 and 1
normalized = max(0, min(1, normalized))
# Create color gradient with reduced brightness (max 200 instead of 255)
# and increased minimum intensity (50 instead of 0)
intensity = int(50 + (150 * (1 - normalized)))
# Return HTML with inline CSS - bold black text
show_val = val
if scale:
show_val = val*100
return f'<div val={val} style="background-color: rgb({intensity}, 200, {intensity}); color: black; font-weight: bold; text-align: center; vertical-align: middle;">{show_val:.1f}</div>'
except (ValueError, TypeError):
return str(val)
demo = gr.Blocks(theme=gr.themes.Soft())
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT)
with gr.Tabs() as tabs:
with gr.TabItem("π
Main"):
df = get_result_data()
df["Model_Type"] = df["Model_Type"].map(model_types)
df["Model"] = df.apply(format_model_link, axis=1)
df["zho"] = df[["zho_Hans", "zho_Hant"]].mean(axis=1)
columns = lang_ids.split("\t")
# print(df.head())
df.pop("zho_Hans")
df.pop("zho_Hant")
df.rename(columns={
"Model_Type": "MT",
"Avg_Multilingual": "AVG",
}, inplace=True)
df.rename(columns={col: col[:3] for col in columns}, inplace=True)
# df = df.style.applymap(apply_color_gradient, subset=['eng'])
numeric_cols = df.select_dtypes(include=[np.number]).columns
global_min = df.select_dtypes(include='number').min().min().astype(float)
global_max = df.select_dtypes(include='number').max().max().astype(float)
for col in numeric_cols:
lang_format_with_color = partial(format_with_color,
# min_val=df[col].min(),
# max_val=df[col].max(),
min_val=global_min,
max_val=global_max,
)
df[col] = df[col].apply(lang_format_with_color)
# for col in numeric_cols:
# df[col] = (df[col] * 100).round(1).astype(str)
AutoEvalColumn.add_columns_from_df(df, numeric_cols)
leaderboard = init_leaderboard(df, AutoEvalColumn)
with gr.TabItem("π
Translation"):
df = get_translation_data()
df["Model_Type"] = df["Model_Type"].map(model_types)
df["Model"] = df.apply(format_model_link, axis=1)
df.rename(columns={
"Model_Type": "MT",
"Avg": "AVG",
}, inplace=True)
numeric_cols = df.select_dtypes(include=[np.number]).columns
# print(df[numeric_cols].min().min())
# print(df[numeric_cols].max().max())
global_min = df.select_dtypes(include='number').min().min().astype(float)
global_max = df.select_dtypes(include='number').max().max().astype(float)
# print(global_max)
for col in numeric_cols:
# print(df[col].min())
lang_format_with_color = partial(format_with_color,
min_val=global_min,
max_val=global_max,
# min_val=df[col].min(),
# max_val=df[col].max(),
scale=False)
df[col] = df[col].apply(lang_format_with_color)
# for col in numeric_cols:
# df[col] = (df[col] * 100).round(1).astype(str)
AutoEvalColumnTranslation.add_columns_from_df(df, numeric_cols)
leaderboard = init_leaderboard(df, AutoEvalColumnTranslation)
# Add statistics tab with suitable emoji and title
with gr.TabItem("π Statistics"):
gr.Markdown('''## Dataset Statistics
| Category | # Instances | # Languages |
|------------------------------|-------------|-------------|
| **General-purpose capabilities** | | |
| Chat | 296 | 23 |
| Chat-Hard | 407 | 23 |
| Safety | 736 | 23 |
| Reasoning | 1,430 | 23 |
| **Multilingual knowledge** | | |
| Translation | 400 | 2 |
| **Total** | 66,787 | - |''')
# gr.Markdown("### Model Statistics")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=r"""@misc{gureja2024mrewardbench,
title={M-RewardBench: Evaluating Reward Models in Multilingual Settings},
author={Srishti Gureja and Lester James V. Miranda and Shayekh Bin Islam and Rishabh Maheshwary and Drishti Sharma and Gusti Winata and Nathan Lambert and Sebastian Ruder and Sara Hooker and Marzieh Fadaee},
year={2024},
eprint={2410.15522},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.15522},
}""",
lines=7,
label="BibTeX",
elem_id="citation-button",
show_copy_button=True,
)
demo.launch(ssr_mode=False)
|