File size: 10,092 Bytes
941a9ef
 
7366dc0
cea6930
 
7366dc0
ac578b5
 
 
 
 
 
 
 
 
 
 
4ec3cb6
 
 
 
 
 
 
ac578b5
 
 
 
 
 
cea6930
 
 
 
 
 
 
 
 
 
 
7366dc0
cea6930
 
 
7366dc0
cea6930
7366dc0
 
 
 
 
 
 
 
 
 
cea6930
 
4ec3cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea6930
4ec3cb6
 
941a9ef
4ec3cb6
 
941a9ef
4ec3cb6
 
cea6930
 
 
 
 
 
 
4ec3cb6
cea6930
 
 
 
 
4ec3cb6
cea6930
 
 
 
4ec3cb6
cea6930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7366dc0
 
 
cea6930
7366dc0
 
 
4ec3cb6
7366dc0
 
 
 
 
 
 
 
 
 
 
4ec3cb6
7366dc0
 
 
 
 
 
 
 
4ec3cb6
 
 
 
 
 
7366dc0
 
 
 
 
ac578b5
941a9ef
cea6930
 
941a9ef
cea6930
4ec3cb6
cea6930
7366dc0
cea6930
7366dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec3cb6
 
7366dc0
 
 
 
4ec3cb6
 
 
 
 
7366dc0
 
 
 
 
 
 
4ec3cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ded997
4ec3cb6
 
 
 
 
 
8ded997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac578b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941a9ef
411541a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import gradio as gr
import pandas as pd
import numpy as np
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter

# Define constants and enums
# TITLE = "<h1>M-RewardBench Leaderboard</h1>"
TITLE = '''<h1>
<span style="font-variant: small-caps;">M-RewardBench</span>: Evaluating Reward Models in Multilingual Settings
</h1>'''
INTRODUCTION_TEXT = '''
Evaluating the chat, safety, reasoning, and translation capabilities of Multilingual Reward Models.

πŸ“„ [Paper](https://arxiv.org/pdf/2410.15522.pdf) | πŸ’» [Code](https://github.com/for-ai/m-rewardbench) | πŸ€— [Dataset](https://hf.co/datasets/C4AI-Community/multilingual-reward-bench) | πŸ“š [arXiv](https://arxiv.org/abs/2410.15522) | πŸ† [Leaderboard](https://c4ai-community-m-rewardbench.hf.space/)

🌐 https://m-rewardbench.github.io/'''

# GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/export?gid=0&format=csv"

GOOGLE_SHEET_URLS = [
  "https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/gviz/tq?tqx=out:csv&sheet=gt",
  "https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/gviz/tq?tqx=out:csv&sheet=maple"
]

# ABOUT_TEXT = """
# <h1>
# <span style="font-variant: small-caps;">M-RewardBench</span>: Evaluating Reward Models in Multilingual Settings
# </h1>

# Welcome to M-RewardBench Leaderboard!"""


class AutoEvalColumn:
  model = {
    "name": "Model",
    "type": "markdown",
    "displayed_by_default": True,
    "never_hidden": True,
  }
  
  model_type = {
    "name": "MT",
    "type": "markdown",
    "displayed_by_default": True,
    "never_hidden": True,
  }	
  
  @classmethod
  def add_columns_from_df(cls, df, columns):
    for col in columns:
      if col.lower() != 'model':  # Skip if it's the model column since it's predefined
        setattr(cls, col, {
              "name": col,
              "type": "markdown",
              "displayed_by_default": True,
              "never_hidden": False,
        })				


class AutoEvalColumnTranslation:
  model = {
    "name": "Model",
    "type": "markdown",
    "displayed_by_default": True,
    "never_hidden": True,
  }
  
  model_type = {
    "name": "MT",
    "type": "markdown",
    "displayed_by_default": True,
    "never_hidden": True,
  }	
  
  @classmethod
  def add_columns_from_df(cls, df, columns):
    for col in columns:
      if col.lower() != 'model':  # Skip if it's the model column since it's predefined
        setattr(cls, col, {
              "name": col,
              "type": "markdown",
              "displayed_by_default": True,
              "never_hidden": False,
        })

def get_result_data():
  return pd.read_csv(GOOGLE_SHEET_URLS[0])


def get_translation_data():
  return pd.read_csv(GOOGLE_SHEET_URLS[1])


def init_leaderboard(dataframe, df_class):
  if dataframe is None or dataframe.empty:
    raise ValueError("Leaderboard DataFrame is empty or None.")

  return Leaderboard(
    value=dataframe,
    datatype=[
      col["type"]
      for col in df_class.__dict__.values()
      if isinstance(col, dict)
    ],
    select_columns=SelectColumns(
      default_selection=[
        col["name"]
        for col in df_class.__dict__.values()
        if isinstance(col, dict) and col["displayed_by_default"]
      ],
      cant_deselect=[
        col["name"]
        for col in df_class.__dict__.values()
        if isinstance(col, dict) and col.get("never_hidden", False)
      ],
      label="Select Columns to Display:",
    ),
    search_columns=["Model"],
    interactive=False,
  )


def format_model_link(row):
  """Format model name as HTML link if URL is available"""
  model_name = row["Model"]
  # url = row.get("URL", "")
  # if pd.notna(url) and url.strip():
  #   return f'<a href="{url}" target="_blank">{model_name}</a>'
  return model_name

lang_ids = "eng_Latn	arb_Arab	tur_Latn	rus_Cyrl	ces_Latn	pol_Latn	kor_Hang	zho_Hans	zho_Hant	fra_Latn	ell_Grek	deu_Latn	ron_Latn	ita_Latn	nld_Latn	pes_Arab	hin_Deva	ukr_Cyrl	por_Latn	ind_Latn	jpn_Jpan	spa_Latn	heb_Hebr	vie_Latn"

emojis = "πŸ”’ πŸ’¬ 🎯"

model_types = {"Generative RM": "πŸ’¬", "DPO": "🎯", "Sequence Classifier": "πŸ”’"}

from functools import partial
def format_with_color(val, min_val=50, max_val=100, scale=True):
    """
    Formats a value with inline green color gradient CSS.
    Returns an HTML string with bold, black text and muted green background.
    """
    try:
        val = float(val)
        if pd.isna(val):
            return str(val)
            
        # Normalize value between 50 and 100 to 0-1 range
        normalized = (val - min_val) / (max_val - min_val)
        # print(normalized)
        # Clamp value between 0 and 1
        normalized = max(0, min(1, normalized))
        
        # Create color gradient with reduced brightness (max 200 instead of 255)
        # and increased minimum intensity (50 instead of 0)
        intensity = int(50 + (150 * (1 - normalized)))        
        
        # Return HTML with inline CSS - bold black text
        show_val = val

        if scale:
          show_val = val*100
          
        return f'<div val={val} style="background-color: rgb({intensity}, 200, {intensity}); color: black; font-weight: bold; text-align: center; vertical-align: middle;">{show_val:.1f}</div>'
      
    except (ValueError, TypeError):
        return str(val)

demo = gr.Blocks(theme=gr.themes.Soft())

with demo:
  gr.HTML(TITLE)
  gr.Markdown(INTRODUCTION_TEXT)

  with gr.Tabs() as tabs:
    with gr.TabItem("πŸ… Main"):
      df = get_result_data()
      df["Model_Type"] = df["Model_Type"].map(model_types)
      df["Model"] = df.apply(format_model_link, axis=1)
      df["zho"] = df[["zho_Hans", "zho_Hant"]].mean(axis=1)
      
      columns = lang_ids.split("\t")
      # print(df.head())
      df.pop("zho_Hans")
      df.pop("zho_Hant")
      
      df.rename(columns={
        "Model_Type": "MT",
        "Avg_Multilingual": "AVG",
      }, inplace=True)
      df.rename(columns={col: col[:3] for col in columns}, inplace=True)
  
      # df = df.style.applymap(apply_color_gradient, subset=['eng'])
      numeric_cols = df.select_dtypes(include=[np.number]).columns
      global_min = df.select_dtypes(include='number').min().min().astype(float)
      global_max = df.select_dtypes(include='number').max().max().astype(float)
      
      
      for col in numeric_cols:
        lang_format_with_color = partial(format_with_color, 
                                        # min_val=df[col].min(),
                                        # max_val=df[col].max(),
                                        min_val=global_min,
                                        max_val=global_max,
                                  )
    
        df[col] = df[col].apply(lang_format_with_color)
        
      # for col in numeric_cols:
      #   df[col] = (df[col] * 100).round(1).astype(str)
      
      AutoEvalColumn.add_columns_from_df(df, numeric_cols)
      leaderboard = init_leaderboard(df, AutoEvalColumn)
      
    with gr.TabItem("πŸ… Translation"):
      df = get_translation_data()
      df["Model_Type"] = df["Model_Type"].map(model_types)
      df["Model"] = df.apply(format_model_link, axis=1)
            
      df.rename(columns={
        "Model_Type": "MT",
        "Avg": "AVG",
      }, inplace=True)
  
      numeric_cols = df.select_dtypes(include=[np.number]).columns
      # print(df[numeric_cols].min().min())   
      # print(df[numeric_cols].max().max())   
      global_min = df.select_dtypes(include='number').min().min().astype(float)
      global_max = df.select_dtypes(include='number').max().max().astype(float)
      # print(global_max)
      
      for col in numeric_cols:
        # print(df[col].min())
        lang_format_with_color = partial(format_with_color, 
                                        min_val=global_min,
                                        max_val=global_max,
                                        # min_val=df[col].min(),
                                        # max_val=df[col].max(),
                                        scale=False)
        df[col] = df[col].apply(lang_format_with_color)
        
      
     
        
      # for col in numeric_cols:
      #   df[col] = (df[col] * 100).round(1).astype(str)
      
      AutoEvalColumnTranslation.add_columns_from_df(df, numeric_cols)
      leaderboard = init_leaderboard(df, AutoEvalColumnTranslation)
  
    # Add statistics tab with suitable emoji and title
    with gr.TabItem("πŸ“Š Statistics"):
      gr.Markdown('''## Dataset Statistics
        
| Category                      | # Instances | # Languages |
|------------------------------|-------------|-------------|
| **General-purpose capabilities** |           |             |
| Chat                         | 296         | 23          |
| Chat-Hard                    | 407         | 23          |
| Safety                       | 736         | 23          |
| Reasoning                    | 1,430       | 23          |
| **Multilingual knowledge**      |           |             |
| Translation                  | 400         | 2           |
| **Total**                    | 66,787      | -           |''')

    # gr.Markdown("### Model Statistics")
  
  with gr.Row():
    with gr.Accordion("πŸ“š Citation", open=False):
      citation_button = gr.Textbox(
            value=r"""@misc{gureja2024mrewardbench,
          title={M-RewardBench: Evaluating Reward Models in Multilingual Settings}, 
          author={Srishti Gureja and Lester James V. Miranda and Shayekh Bin Islam and Rishabh Maheshwary and Drishti Sharma and Gusti Winata and Nathan Lambert and Sebastian Ruder and Sara Hooker and Marzieh Fadaee},
          year={2024},
          eprint={2410.15522},
          archivePrefix={arXiv},
          primaryClass={cs.CL},
          url={https://arxiv.org/abs/2410.15522}, 
    }""",
            lines=7,
            label="BibTeX",
            elem_id="citation-button",
            show_copy_button=True,
      )

demo.launch(ssr_mode=False)