Spaces:
Running
Running
File size: 5,009 Bytes
941a9ef 7366dc0 cea6930 7366dc0 cea6930 7366dc0 cea6930 7366dc0 cea6930 7366dc0 cea6930 941a9ef cea6930 7366dc0 cea6930 7366dc0 941a9ef cea6930 941a9ef cea6930 7366dc0 cea6930 7366dc0 cea6930 7366dc0 941a9ef 411541a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import pandas as pd
import numpy as np
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
# Define constants and enums
TITLE = "<h1>M-RewardBench Leaderboard</h1>"
INTRODUCTION_TEXT = "https://m-rewardbench.github.io/"
GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1qrD7plUdrBwAw7G6UeDVZAaV9ihxaNAcoiKwSaqotR4/export?gid=0&format=csv"
ABOUT_TEXT = """Welcome to M-RewardBench Leaderboard!"""
class AutoEvalColumn:
model = {
"name": "Model",
"type": "markdown",
"displayed_by_default": True,
"never_hidden": True,
}
model_type = {
"name": "MT",
"type": "markdown",
"displayed_by_default": True,
"never_hidden": True,
}
@classmethod
def add_columns_from_df(cls, df, columns):
for col in columns:
if col.lower() != 'model': # Skip if it's the model column since it's predefined
setattr(cls, col, {
"name": col,
"type": "markdown",
"displayed_by_default": True,
"never_hidden": False,
})
def get_result_data():
return pd.read_csv(GOOGLE_SHEET_URL)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[
col["type"]
for col in AutoEvalColumn.__dict__.values()
if isinstance(col, dict)
],
select_columns=SelectColumns(
default_selection=[
col["name"]
for col in AutoEvalColumn.__dict__.values()
if isinstance(col, dict) and col["displayed_by_default"]
],
cant_deselect=[
col["name"]
for col in AutoEvalColumn.__dict__.values()
if isinstance(col, dict) and col.get("never_hidden", False)
],
label="Select Columns to Display:",
),
search_columns=["Model"],
interactive=False,
)
def format_model_link(row):
"""Format model name as HTML link if URL is available"""
model_name = row["Model"]
# url = row.get("URL", "")
# if pd.notna(url) and url.strip():
# return f'<a href="{url}" target="_blank">{model_name}</a>'
return model_name
lang_ids = "eng_Latn arb_Arab tur_Latn rus_Cyrl ces_Latn pol_Latn kor_Hang zho_Hans zho_Hant fra_Latn ell_Grek deu_Latn ron_Latn ita_Latn nld_Latn pes_Arab hin_Deva ukr_Cyrl por_Latn ind_Latn jpn_Jpan spa_Latn heb_Hebr vie_Latn"
emojis = "π’ π¬ π―"
model_types = {"Generative RM": "π¬", "DPO": "π―", "Sequence Classifier": "π’"}
from functools import partial
def format_with_color(val, min_val=50, max_val=100):
"""
Formats a value with inline green color gradient CSS.
Returns an HTML string with bold, black text and muted green background.
"""
try:
val = float(val)
if pd.isna(val):
return str(val)
# Normalize value between 50 and 100 to 0-1 range
normalized = (val - min_val) / (max_val - min_val)
# Clamp value between 0 and 1
normalized = max(0, min(1, normalized))
# Create color gradient with reduced brightness (max 200 instead of 255)
# and increased minimum intensity (50 instead of 0)
intensity = int(50 + (150 * (1 - normalized)))
# Return HTML with inline CSS - bold black text
return f'<div val={val} style="background-color: rgb({intensity}, 200, {intensity}); color: black; font-weight: bold; text-align: center; vertical-align: middle;">{val*100:.1f}</div>'
except (ValueError, TypeError):
return str(val)
demo = gr.Blocks(theme=gr.themes.Soft())
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT)
with gr.Tabs() as tabs:
with gr.TabItem("π
Leaderboard"):
df = get_result_data()
df["Model_Type"] = df["Model_Type"].map(model_types)
df["Model"] = df.apply(format_model_link, axis=1)
df["zho"] = df[["zho_Hans", "zho_Hant"]].mean(axis=1)
columns = lang_ids.split("\t")
# print(df.head())
df.pop("zho_Hans")
df.pop("zho_Hant")
df.rename(columns={
"Model_Type": "MT",
"Avg_Multilingual": "AVG",
}, inplace=True)
df.rename(columns={col: col[:3] for col in columns}, inplace=True)
# df = df.style.applymap(apply_color_gradient, subset=['eng'])
numeric_cols = df.select_dtypes(include=[np.number]).columns
for col in numeric_cols:
lang_format_with_color = partial(format_with_color,
min_val=df[col].min(),
max_val=df[col].max())
df[col] = df[col].apply(lang_format_with_color)
# for col in numeric_cols:
# df[col] = (df[col] * 100).round(1).astype(str)
AutoEvalColumn.add_columns_from_df(df, numeric_cols)
leaderboard = init_leaderboard(df)
demo.launch(ssr_mode=False)
|