import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from scipy.optimize import minimize
import plotly.express as px
from scipy.stats import t, f
import gradio as gr
import io
import os
from zipfile import ZipFile

class RSM_BoxBehnken:
    def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
        # ... (El código de la clase RSM_BoxBehnken se mantiene igual, solo se modifican las funciones que generan dataframes o strings)
        self.data = data.copy()
        self.model = None
        self.model_simplified = None
        self.optimized_results = None
        self.optimal_levels = None

        self.x1_name = x1_name
        self.x2_name = x2_name
        self.x3_name = x3_name
        self.y_name = y_name

        # Niveles originales de las variables
        self.x1_levels = x1_levels
        self.x2_levels = x2_levels
        self.x3_levels = x3_levels

    def get_levels(self, variable_name):
        if variable_name == self.x1_name:
            return self.x1_levels
        elif variable_name == self.x2_name:
            return self.x2_levels
        elif variable_name == self.x3_name:
            return self.x3_levels
        else:
            raise ValueError(f"Variable desconocida: {variable_name}")

    def fit_model(self):
        formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
                  f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
                  f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
        self.model = smf.ols(formula, data=self.data).fit()
        print("Modelo Completo:")
        print(self.model.summary())
        return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")

    def fit_simplified_model(self):
        formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
                  f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
        self.model_simplified = smf.ols(formula, data=self.data).fit()
        print("\nModelo Simplificado:")
        print(self.model_simplified.summary())
        return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")

    def optimize(self, method='Nelder-Mead'):
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return

        def objective_function(x):
            return -self.model_simplified.predict(pd.DataFrame({self.x1_name: [x[0]], self.x2_name: [x[1]], self.x3_name: [x[2]]}))

        bounds = [(-1, 1), (-1, 1), (-1, 1)]
        x0 = [0, 0, 0]

        self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
        self.optimal_levels = self.optimized_results.x
        
        optimal_levels_natural = [
            round(self.coded_to_natural(self.optimal_levels[0], self.x1_name), 3),
            round(self.coded_to_natural(self.optimal_levels[1], self.x2_name), 3),
            round(self.coded_to_natural(self.optimal_levels[2], self.x3_name), 3)
        ]
        optimization_table = pd.DataFrame({
            'Variable': [self.x1_name, self.x2_name, self.x3_name],
            'Nivel Óptimo (Natural)': optimal_levels_natural,
            'Nivel Óptimo (Codificado)': [round(x, 3) for x in self.optimal_levels]
        })

        return optimization_table

    def plot_rsm_individual(self, fixed_variable, fixed_level):
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return None

        varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
        
        x_natural_levels = self.get_levels(varying_variables[0])
        y_natural_levels = self.get_levels(varying_variables[1])

        x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
        y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
        x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)

        x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
        y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])

        prediction_data = pd.DataFrame({
            varying_variables[0]: x_grid_coded.flatten(),
            varying_variables[1]: y_grid_coded.flatten(),
        })
        prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)

        z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)

        varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]

        fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
        subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]

        valid_levels = [-1, 0, 1]
        experiments_data = subset_data[
            subset_data[varying_variables[0]].isin(valid_levels) &
            subset_data[varying_variables[1]].isin(valid_levels)
        ]

        experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
        experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))

        fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])

        for i in range(x_grid_natural.shape[0]):
            fig.add_trace(go.Scatter3d(
                x=x_grid_natural[i, :],
                y=y_grid_natural[i, :],
                z=z_pred[i, :],
                mode='lines',
                line=dict(color='gray', width=2),
                showlegend=False,
                hoverinfo='skip'
            ))
        for j in range(x_grid_natural.shape[1]):
            fig.add_trace(go.Scatter3d(
                x=x_grid_natural[:, j],
                y=y_grid_natural[:, j],
                z=z_pred[:, j],
                mode='lines',
                line=dict(color='gray', width=2),
                showlegend=False,
                hoverinfo='skip'
            ))

        colors = ['red', 'blue', 'green', 'purple', 'orange', 'yellow', 'cyan', 'magenta']
        point_labels = []
        for i, row in experiments_data.iterrows():
            point_labels.append(f"{row[self.y_name]:.2f}")

        fig.add_trace(go.Scatter3d(
            x=experiments_x_natural,
            y=experiments_y_natural,
            z=experiments_data[self.y_name],
            mode='markers+text',
            marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
            text=point_labels,
            textposition='top center',
            name='Experimentos'
        ))

        fig.update_layout(
            scene=dict(
                xaxis_title=varying_variables[0] + " (g/L)",
                yaxis_title=varying_variables[1] + " (g/L)",
                zaxis_title=self.y_name,
            ),
            title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.2f} (g/L) (Modelo Simplificado)</sup>",
            height=800,
            width=1000,
            showlegend=True
        )
        return fig

    def generate_all_plots(self):
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return

        levels_to_plot_natural = {
            self.x1_name: self.x1_levels,
            self.x2_name: self.x2_levels,
            self.x3_name: self.x3_levels
        }
        
        figs = []

        for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
            for level in levels_to_plot_natural[fixed_variable]:
                fig = self.plot_rsm_individual(fixed_variable, level)
                if fig is not None:
                    figs.append(fig)
        return figs

    def coded_to_natural(self, coded_value, variable_name):
        levels = self.get_levels(variable_name)
        return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2

    def natural_to_coded(self, natural_value, variable_name):
        levels = self.get_levels(variable_name)
        return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])

    def pareto_chart(self, model, title):
        tvalues = model.tvalues[1:]
        abs_tvalues = np.abs(tvalues)
        sorted_idx = np.argsort(abs_tvalues)[::-1]
        sorted_tvalues = abs_tvalues[sorted_idx]
        sorted_names = tvalues.index[sorted_idx]

        alpha = 0.05
        dof = model.df_resid
        t_critical = t.ppf(1 - alpha / 2, dof)

        fig = px.bar(
            x=sorted_tvalues,
            y=sorted_names,
            orientation='h',
            labels={'x': 'Efecto Estandarizado', 'y': 'Término'},
            title=title
        )
        fig.update_yaxes(autorange="reversed")

        fig.add_vline(x=t_critical, line_dash="dot",
                      annotation_text=f"t crítico = {t_critical:.2f}",
                      annotation_position="bottom right")

        return fig

    def get_simplified_equation(self):
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return None

        coefficients = self.model_simplified.params
        equation = f"{self.y_name} = {coefficients['Intercept']:.3f}"

        for term, coef in coefficients.items():
            if term != 'Intercept':
              if term == f'{self.x1_name}':
                equation += f" + {coef:.3f}*{self.x1_name}"
              elif term == f'{self.x2_name}':
                equation += f" + {coef:.3f}*{self.x2_name}"
              elif term == f'{self.x3_name}':
                equation += f" + {coef:.3f}*{self.x3_name}"
              elif term == f'I({self.x1_name} ** 2)':
                equation += f" + {coef:.3f}*{self.x1_name}^2"
              elif term == f'I({self.x2_name} ** 2)':
                equation += f" + {coef:.3f}*{self.x2_name}^2"
              elif term == f'I({self.x3_name} ** 2)':
                equation += f" + {coef:.3f}*{self.x3_name}^2"

        return equation

    def generate_prediction_table(self):
      if self.model_simplified is None:
          print("Error: Ajusta el modelo simplificado primero.")
          return None

      self.data['Predicho'] = self.model_simplified.predict(self.data)
      self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']

      prediction_table = self.data[[self.y_name, 'Predicho', 'Residual']].copy()
      prediction_table[self.y_name] = prediction_table[self.y_name].round(3)
      prediction_table['Predicho'] = prediction_table['Predicho'].round(3)
      prediction_table['Residual'] = prediction_table['Residual'].round(3)

      return prediction_table

    def calculate_contribution_percentage(self):
      if self.model_simplified is None:
          print("Error: Ajusta el modelo simplificado primero.")
          return None

      anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
      ss_total = anova_table['sum_sq'].sum()

      contribution_table = pd.DataFrame({
          'Factor': [],
          'Suma de Cuadrados': [],
          '% Contribución': []
      })
      
      for index, row in anova_table.iterrows():
          if index != 'Residual':
            factor_name = index
            if factor_name == f'I({self.x1_name} ** 2)':
              factor_name = f'{self.x1_name}^2'
            elif factor_name == f'I({self.x2_name} ** 2)':
              factor_name = f'{self.x2_name}^2'
            elif factor_name == f'I({self.x3_name} ** 2)':
              factor_name = f'{self.x3_name}^2'
            
            ss_factor = row['sum_sq']
            contribution_percentage = (ss_factor / ss_total) * 100

            contribution_table = pd.concat([contribution_table, pd.DataFrame({
                'Factor': [factor_name],
                'Suma de Cuadrados': [round(ss_factor, 3)],
                '% Contribución': [round(contribution_percentage, 3)]
            })], ignore_index=True)

      return contribution_table

    def calculate_detailed_anova(self):
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return None

        formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
                          f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
        model_reduced = smf.ols(formula_reduced, data=self.data).fit()

        anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)

        ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)

        df_total = len(self.data) - 1

        ss_regression = anova_reduced['sum_sq'][:-1].sum()

        df_regression = len(anova_reduced) - 1

        ss_residual = self.model_simplified.ssr
        df_residual = self.model_simplified.df_resid

        replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
        ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
        df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))

        ss_lack_of_fit = ss_residual - ss_pure_error
        df_lack_of_fit = df_residual - df_pure_error

        ms_regression = ss_regression / df_regression
        ms_residual = ss_residual / df_residual
        ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
        ms_pure_error = ss_pure_error / df_pure_error

        f_lack_of_fit = ms_lack_of_fit / ms_pure_error
        p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error)

        detailed_anova_table = pd.DataFrame({
            'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
            'Suma de Cuadrados': [round(ss_regression, 3), round(ss_residual, 3), round(ss_lack_of_fit, 3), round(ss_pure_error, 3), round(ss_total, 3)],
            'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
            'Cuadrado Medio': [round(ms_regression, 3), round(ms_residual, 3), round(ms_lack_of_fit, 3), round(ms_pure_error, 3), np.nan],
            'F': [np.nan, np.nan, round(f_lack_of_fit, 3), np.nan, np.nan],
            'Valor p': [np.nan, np.nan, round(p_lack_of_fit, 3), np.nan, np.nan]
        })
        
        ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
        df_curvature = 3

        detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', round(ss_curvature, 3), df_curvature, round(ss_curvature / df_curvature, 3), np.nan, np.nan]

        detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
        
        detailed_anova_table = detailed_anova_table.reset_index(drop=True)

        return detailed_anova_table

# --- Funciones para la interfaz de Gradio ---

def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
    try:
        x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
        x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
        x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]

        data_list = [row.split(',') for row in data_str.strip().split('\n')]
        column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
        data = pd.DataFrame(data_list, columns=column_names)
        data = data.apply(pd.to_numeric, errors='coerce')

        if not all(col in data.columns for col in column_names):
            raise ValueError("El formato de los datos no es correcto.")

        global rsm
        rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)

        return data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True)

    except Exception as e:
        return None, "", "", "", "", [], [], [], gr.update(visible=False), f"Error: {e}"

def fit_and_optimize_model():
    if 'rsm' not in globals():
        return None, None, None, None, None, None, "Error: Carga los datos primero."
    
    model_completo, pareto_completo = rsm.fit_model()
    model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
    optimization_table = rsm.optimize()
    equation = rsm.get_simplified_equation()
    prediction_table = rsm.generate_prediction_table()
    contribution_table = rsm.calculate_contribution_percentage()
    anova_table = rsm.calculate_detailed_anova()
    
    equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
    equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"

    
    return model_completo.summary().as_html(), pareto_completo, model_simplificado.summary().as_html(), pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table

current_plot_index = 0
plot_images = []

def generate_rsm_plot(fixed_variable, fixed_level, request: gr.Request):
    global current_plot_index, plot_images

    if 'rsm' not in globals():
        return None, "Error: Carga los datos primero.", None, None

    if not plot_images:
        plot_images = rsm.generate_all_plots()

    if not plot_images:
        return None, "Error: No se pudieron generar los gráficos.", None, None

    current_plot_index = (current_plot_index) % len(plot_images)
    fig = plot_images[current_plot_index]

    img_bytes = fig.to_image(format="png")
    
    # Crear un archivo temporal para guardar la imagen
    temp_file = os.path.join(request.kwargs['temp_dir'], f"plot_{current_plot_index}.png")
    with open(temp_file, "wb") as f:
        f.write(img_bytes)

    return fig, "", temp_file, gr.update(visible=True)

def download_excel():
    if 'rsm' not in globals():
        return None, "Error: Carga los datos primero."

    output = io.BytesIO()
    with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
        rsm.data.to_excel(writer, sheet_name='Datos', index=False)
        rsm.generate_prediction_table().to_excel(writer, sheet_name='Predicciones', index=False)
        rsm.optimize().to_excel(writer, sheet_name='Optimizacion', index=False)
        rsm.calculate_contribution_percentage().to_excel(writer, sheet_name='Contribucion', index=False)
        rsm.calculate_detailed_anova().to_excel(writer, sheet_name='ANOVA', index=False)

    output.seek(0)
    
    return gr.File(value=output, visible=True, filename="resultados_rsm.xlsx")

def download_images(request: gr.Request):
    global plot_images
    if 'rsm' not in globals():
        return None, "Error: Carga los datos primero."

    if not plot_images:
        return None, "Error: No se han generado gráficos."

    zip_filename = "graficos_rsm.zip"
    zip_path = os.path.join(request.kwargs['temp_dir'], zip_filename)

    with ZipFile(zip_path, 'w') as zipf:
        for i, fig in enumerate(plot_images):
            img_bytes = fig.to_image(format="png")
            img_path = os.path.join(request.kwargs['temp_dir'], f"plot_{i}.png")
            with open(img_path, "wb") as f:
                f.write(img_bytes)
            zipf.write(img_path, f"plot_{i}.png")

    return gr.File(value=zip_path, visible=True, filename=zip_filename)

def next_plot():
    global current_plot_index
    current_plot_index += 1
    return current_plot_index

def prev_plot():
    global current_plot_index
    current_plot_index -= 1
    return current_plot_index

# --- Crear la interfaz de Gradio ---

with gr.Blocks() as demo:
    gr.Markdown("# Optimización de la producción de AIA usando RSM Box-Behnken")

    with gr.Row():
        with gr.Column():
            gr.Markdown("## Configuración del Diseño")
            x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa")
            x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Extracto de Levadura)", value="Extracto_de_Levadura")
            x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Triptófano)", value="Triptofano")
            y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. AIA (ppm))", value="AIA_ppm")
            x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5")
            x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3")
            x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9")
            data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=5, value="""1,-1,-1,0,166.594
2,1,-1,0,177.557
3,-1,1,0,127.261
4,1,1,0,147.573
5,-1,0,-1,188.883
6,1,0,-1,224.527
7,-1,0,1,190.238
8,1,0,1,226.483
9,0,-1,-1,195.550
10,0,1,-1,149.493
11,0,-1,1,187.683
12,0,1,1,148.621
13,0,0,0,278.951
14,0,0,0,297.238
15,0,0,0,280.896""")
            load_button = gr.Button("Cargar Datos")
            

        with gr.Column():
            gr.Markdown("## Datos Cargados")
            data_output = gr.Dataframe(label="Tabla de Datos")

    # Hacer que la sección de análisis sea visible solo después de cargar los datos
    with gr.Row(visible=False) as analysis_row:
        with gr.Column():
            fit_button = gr.Button("Ajustar Modelo y Optimizar")
            download_excel_button = gr.Button("Descargar Tablas en Excel")
            gr.Markdown("**Modelo Completo**")
            model_completo_output = gr.HTML()
            pareto_completo_output = gr.Plot()
            gr.Markdown("**Modelo Simplificado**")
            model_simplificado_output = gr.HTML()
            pareto_simplificado_output = gr.Plot()
            equation_output = gr.HTML()
            optimization_table_output = gr.Dataframe(label="Tabla de Optimización", headers=["Variable", "Nivel Óptimo (Natural)", "Nivel Óptimo (Codificado)"])
            prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
            contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución")
            anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
        with gr.Column():
            gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
            fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
            fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
            with gr.Row():
                plot_button = gr.Button("Generar Gráfico")
                download_images_button = gr.Button("Descargar Gráficos en ZIP")
            
            prev_plot_button = gr.Button("<")
            next_plot_button = gr.Button(">")
            rsm_plot_output = gr.Plot()
            download_plot_button = gr.Button("Descargar Gráfico Actual")
            plot_image_output = gr.File(label="Gráfico Actual", visible=False)
            

    load_button.click(
        load_data,
        inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
        outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
    )

    fit_button.click(fit_and_optimize_model, outputs=[model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output])
    
    plot_button.click(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output, equation_output, plot_image_output, download_plot_button])
    
    download_excel_button.click(download_excel, outputs=download_excel_button, api_name="download_excel")

    download_images_button.click(download_images, outputs=download_images_button, api_name="download_images")

    download_plot_button.click(lambda x: x, inputs=[plot_image_output], outputs=[plot_image_output], api_name="download_plot")
    
    prev_plot_button.click(prev_plot, outputs=prev_plot_button).then(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output, equation_output, plot_image_output, download_plot_button])
    
    next_plot_button.click(next_plot, outputs=next_plot_button).then(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output, equation_output, plot_image_output, download_plot_button])

    # Ejemplo de uso
    gr.Markdown("## Ejemplo de uso")
    gr.Markdown("1. Introduce los nombres de las variables y sus niveles en las cajas de texto correspondientes.")
    gr.Markdown("2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.")
    gr.Markdown("3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.")
    gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
    gr.Markdown("5. Selecciona una variable fija y su nivel en los controles deslizantes.")
    gr.Markdown("6. Haz clic en 'Generar Gráfico' para generar un gráfico de superficie de respuesta.")
    gr.Markdown("7. Usa '<' y '>' para navegar entre los gráficos generados.")
    gr.Markdown("8. Haz clic en 'Descargar Tablas en Excel' para obtener un archivo Excel con todas las tablas generadas.")
    gr.Markdown("9. Haz clic en 'Descargar Gráfico Actual' para descargar la imagen del gráfico actual en formato PNG.")
    gr.Markdown("10. Haz clic en 'Descargar Gráficos en ZIP' para descargar todas las imágenes de los gráficos en un archivo ZIP.")

demo.launch()