File size: 21,651 Bytes
71817ec
 
 
 
 
 
 
 
f340ee7
71817ec
a6c30a7
 
 
518472b
 
 
 
 
71817ec
 
550ed22
518472b
 
 
 
 
 
 
 
 
 
 
 
 
 
854197f
 
 
 
 
 
518472b
550ed22
 
 
 
854197f
518472b
550ed22
 
 
406b47b
518472b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
854197f
518472b
 
 
 
 
 
 
854197f
 
518472b
 
 
 
 
 
 
 
 
 
 
 
 
854197f
518472b
854197f
 
518472b
 
 
 
 
 
854197f
 
 
 
518472b
 
 
 
 
 
854197f
 
518472b
854197f
518472b
 
854197f
518472b
f340ee7
 
518472b
 
f340ee7
854197f
f340ee7
854197f
518472b
 
 
854197f
518472b
 
 
 
 
 
a6c30a7
518472b
 
 
 
 
 
854197f
 
 
518472b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
854197f
 
 
518472b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c30a7
854197f
 
 
 
 
a6c30a7
 
854197f
 
 
 
 
 
518472b
854197f
 
 
 
518472b
854197f
 
 
71817ec
f340ee7
518472b
 
 
 
 
 
 
 
 
 
f340ee7
518472b
 
f340ee7
518472b
 
 
a6c30a7
518472b
f340ee7
 
518472b
 
 
 
 
 
 
 
 
 
f340ee7
518472b
 
f340ee7
518472b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f340ee7
 
518472b
 
 
 
 
 
 
 
f340ee7
518472b
f340ee7
518472b
 
 
 
 
f340ee7
 
 
 
 
518472b
a6c30a7
f340ee7
 
 
 
 
518472b
f340ee7
 
 
 
518472b
f340ee7
 
 
518472b
f340ee7
 
 
 
 
 
a6c30a7
f340ee7
518472b
f340ee7
518472b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c30a7
518472b
f340ee7
 
 
550ed22
 
 
 
 
 
 
 
 
 
 
a6c30a7
550ed22
 
 
 
 
 
 
 
 
 
 
854197f
 
550ed22
f340ee7
 
 
 
 
 
 
 
 
518472b
f340ee7
 
 
550ed22
f340ee7
71817ec
854197f
550ed22
 
a6c30a7
518472b
a6c30a7
 
518472b
 
 
 
 
 
a6c30a7
518472b
 
a6c30a7
 
 
 
 
 
 
 
 
518472b
 
a6c30a7
 
 
518472b
a6c30a7
 
 
 
 
518472b
 
 
a6c30a7
518472b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71817ec
550ed22
 
71817ec
854197f
550ed22
854197f
550ed22
 
 
406b47b
 
 
550ed22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
854197f
 
518472b
 
f340ee7
 
 
 
 
 
 
 
 
 
 
854197f
 
f340ee7
550ed22
854197f
518472b
854197f
550ed22
 
 
 
 
 
1cf93db
a6c30a7
518472b
854197f
518472b
 
a6c30a7
854197f
 
550ed22
 
 
 
 
 
518472b
 
71817ec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from scipy.optimize import minimize
import plotly.express as px
from scipy.stats import t, f
import gradio as gr
import io
import os
from zipfile import ZipFile
import warnings

# Suppress specific warnings
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=RuntimeWarning)

class RSM_BoxBehnken:
    def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
        """
        Initialize the Response Surface Methodology Box-Behnken Design class
        
        Parameters:
        -----------
        data : pandas.DataFrame
            Experimental design data
        x1_name, x2_name, x3_name : str
            Names of independent variables
        y_name : str
            Name of dependent variable
        x1_levels, x2_levels, x3_levels : list
            Levels of each independent variable
        """
        self.data = data.copy()
        self.model = None
        self.model_simplified = None
        self.optimized_results = None
        self.optimal_levels = None

        # Variable names
        self.x1_name = x1_name
        self.x2_name = x2_name
        self.x3_name = x3_name
        self.y_name = y_name

        # Original levels of variables
        self.x1_levels = x1_levels
        self.x2_levels = x2_levels
        self.x3_levels = x3_levels

    def _get_levels(self, variable_name):
        """
        Get levels for a specific variable
        
        Parameters:
        -----------
        variable_name : str
            Name of the variable
        
        Returns:
        --------
        list
            Levels of the variable
        """
        level_map = {
            self.x1_name: self.x1_levels,
            self.x2_name: self.x2_levels,
            self.x3_name: self.x3_levels
        }
        
        if variable_name not in level_map:
            raise ValueError(f"Unknown variable: {variable_name}")
        
        return level_map[variable_name]

    def fit_model(self, simplified=False):
        """
        Fit the response surface model
        
        Parameters:
        -----------
        simplified : bool, optional
            Whether to fit a simplified model, by default False
        
        Returns:
        --------
        tuple
            Fitted model and Pareto chart
        """
        if simplified:
            formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
                      f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
            self.model_simplified = smf.ols(formula, data=self.data).fit()
            print("\nSimplified Model:")
            print(self.model_simplified.summary())
            return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Simplified Model")
        else:
            formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
                      f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
                      f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
            self.model = smf.ols(formula, data=self.data).fit()
            print("Full Model:")
            print(self.model.summary())
            return self.model, self.pareto_chart(self.model, "Pareto - Full Model")

    def optimize(self, method='Nelder-Mead'):
        """
        Optimize the response surface model
        
        Parameters:
        -----------
        method : str, optional
            Optimization method, by default 'Nelder-Mead'
        
        Returns:
        --------
        pandas.DataFrame
            Optimization results table
        """
        if self.model_simplified is None:
            raise ValueError("Fit the simplified model first.")

        def objective_function(x):
            """Objective function for optimization"""
            return -self.model_simplified.predict(pd.DataFrame({
                self.x1_name: [x[0]], 
                self.x2_name: [x[1]], 
                self.x3_name: [x[2]]
            }))

        bounds = [(-1, 1), (-1, 1), (-1, 1)]
        x0 = [0, 0, 0]

        self.optimized_results = minimize(
            objective_function, 
            x0, 
            method=method, 
            bounds=bounds
        )
        self.optimal_levels = self.optimized_results.x
        
        # Convert to natural levels
        optimal_levels_natural = [
            round(self.coded_to_natural(self.optimal_levels[i], var), 3) 
            for i, var in enumerate([self.x1_name, self.x2_name, self.x3_name])
        ]
        
        optimization_table = pd.DataFrame({
            'Variable': [self.x1_name, self.x2_name, self.x3_name],
            'Optimal Level (Natural)': optimal_levels_natural,
            'Optimal Level (Coded)': [round(x, 3) for x in self.optimal_levels]
        })

        return optimization_table

    def coded_to_natural(self, coded_value, variable_name):
        """
        Convert coded value to natural level
        
        Parameters:
        -----------
        coded_value : float
            Coded value of the variable
        variable_name : str
            Name of the variable
        
        Returns:
        --------
        float
            Natural level of the variable
        """
        levels = self._get_levels(variable_name)
        return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2

    def natural_to_coded(self, natural_value, variable_name):
        """
        Convert natural level to coded value
        
        Parameters:
        -----------
        natural_value : float
            Natural level of the variable
        variable_name : str
            Name of the variable
        
        Returns:
        --------
        float
            Coded value of the variable
        """
        levels = self._get_levels(variable_name)
        return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])

    def pareto_chart(self, model, title):
        """
        Create Pareto chart of standardized effects
        
        Parameters:
        -----------
        model : statsmodels.regression.linear_model.RegressionResultsWrapper
            Fitted regression model
        title : str
            Title of the Pareto chart
        
        Returns:
        --------
        plotly.graph_objects.Figure
            Pareto chart
        """
        tvalues = model.tvalues[1:]
        abs_tvalues = np.abs(tvalues)
        sorted_idx = np.argsort(abs_tvalues)[::-1]
        sorted_tvalues = abs_tvalues[sorted_idx]
        sorted_names = tvalues.index[sorted_idx]

        alpha = 0.05
        dof = model.df_resid
        t_critical = t.ppf(1 - alpha / 2, dof)

        fig = px.bar(
            x=sorted_tvalues,
            y=sorted_names,
            orientation='h',
            labels={'x': 'Standardized Effect', 'y': 'Term'},
            title=title
        )
        fig.update_yaxes(autorange="reversed")
        fig.add_vline(x=t_critical, line_dash="dot",
                      annotation_text=f"Critical t = {t_critical:.2f}",
                      annotation_position="bottom right")

        return fig

    def generate_prediction_table(self):
        """
        Generate prediction table with predicted and residual values
        
        Returns:
        --------
        pandas.DataFrame
            Prediction table
        """
        if self.model_simplified is None:
            raise ValueError("Fit the simplified model first.")

        predictions = self.model_simplified.predict(self.data)
        residuals = self.data[self.y_name] - predictions

        prediction_table = self.data.copy()
        prediction_table['Predicted'] = predictions.round(3)
        prediction_table['Residual'] = residuals.round(3)

        return prediction_table[[self.y_name, 'Predicted', 'Residual']]

    def calculate_contribution_percentage(self):
        """
        Calculate percentage contribution of model terms
        
        Returns:
        --------
        pandas.DataFrame
            Contribution percentage table
        """
        if self.model_simplified is None:
            raise ValueError("Fit the simplified model first.")

        anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
        ss_total = anova_table['sum_sq'].sum()

        contribution_table = []
        
        for index, row in anova_table.iterrows():
            if index != 'Residual':
                factor_name = index.replace('I(', '').replace('**2)', '^2')
                ss_factor = row['sum_sq']
                contribution_percentage = (ss_factor / ss_total) * 100

                contribution_table.append({
                    'Factor': factor_name,
                    'Sum of Squares': round(ss_factor, 3),
                    '% Contribution': round(contribution_percentage, 3)
                })

        return pd.DataFrame(contribution_table)

    def calculate_detailed_anova(self):
        """
        Perform detailed ANOVA analysis
        
        Returns:
        --------
        pandas.DataFrame
            Detailed ANOVA table
        """
        if self.model_simplified is None:
            raise ValueError("Fit the simplified model first.")

        # Preparar datos para ANOVA detallado
        ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
        df_total = len(self.data) - 1

        # ANOVA para modelo reducido
        formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
                          f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
        model_reduced = smf.ols(formula_reduced, data=self.data).fit()
        anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)

        # Calcular componentes de variación
        ss_regression = anova_reduced['sum_sq'][:-1].sum()
        df_regression = len(anova_reduced) - 1

        ss_residual = self.model_simplified.ssr
        df_residual = self.model_simplified.df_resid

        # Error puro
        replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
        ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
        df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))

        # Falta de ajuste
        ss_lack_of_fit = ss_residual - ss_pure_error
        df_lack_of_fit = df_residual - df_pure_error

        # Calcular cuadrados medios y estadísticos F
        ms_regression = ss_regression / df_regression
        ms_residual = ss_residual / df_residual
        ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
        ms_pure_error = ss_pure_error / df_pure_error

        f_lack_of_fit = ms_lack_of_fit / ms_pure_error
        p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error)

        # Crear tabla de ANOVA detallada
        detailed_anova_table = pd.DataFrame({
            'Source of Variation': ['Regression', 'Residual', 'Lack of Fit', 'Pure Error', 'Total'],
            'Sum of Squares': [
                round(ss_regression, 3), 
                round(ss_residual, 3), 
                round(ss_lack_of_fit, 3), 
                round(ss_pure_error, 3), 
                round(ss_total, 3)
            ],
            'Degrees of Freedom': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
            'Mean Square': [
                round(ms_regression, 3), 
                round(ms_residual, 3), 
                round(ms_lack_of_fit, 3), 
                round(ms_pure_error, 3), 
                np.nan
            ],
            'F': [np.nan, np.nan, round(f_lack_of_fit, 3), np.nan, np.nan],
            'p-value': [np.nan, np.nan, round(p_lack_of_fit, 3), np.nan, np.nan]
        })

        return detailed_anova_table
# --- Funciones para la interfaz de Gradio ---

def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
    try:
        x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
        x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
        x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]

        data_list = [row.split(',') for row in data_str.strip().split('\n')]
        column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
        data = pd.DataFrame(data_list, columns=column_names)
        data = data.apply(pd.to_numeric, errors='coerce')

        if not all(col in data.columns for col in column_names):
            raise ValueError("El formato de los datos no es correcto.")

        global rsm
        rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)

        return data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True)

    except Exception as e:
        return None, "", "", "", "", [], [], [], gr.update(visible=False), f"Error: {e}"

def fit_and_optimize_model():
    if 'rsm' not in globals():
        return None, None, None, None, None, None, "Error: Carga los datos primero."
    
    model_completo, pareto_completo = rsm.fit_model()
    model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
    optimization_table = rsm.optimize()
    equation = rsm.get_simplified_equation()
    prediction_table = rsm.generate_prediction_table()
    contribution_table = rsm.calculate_contribution_percentage()
    anova_table = rsm.calculate_detailed_anova()

    equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
    equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"

    
    return model_completo.summary().as_html(), pareto_completo, model_simplificado.summary().as_html(), pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table

def generate_rsm_plot(fixed_variable, fixed_level):
    if 'rsm' not in globals():
        return None, "Error: Carga los datos primero."
    
    # Generar todas las gráficas
    all_figs = rsm.generate_all_plots()

    # Crear una lista de figuras para la salida
    plot_outputs = []
    for fig in all_figs:
        # Convertir la figura a una imagen en formato PNG
        img_bytes = fig.to_image(format="png")
        plot_outputs.append(img_bytes)

    # Retornar la lista de imágenes
    return plot_outputs

def download_excel():
    if 'rsm' not in globals():
        return None, "Error: Carga los datos y ajusta el modelo primero."

    output = io.BytesIO()
    with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
        rsm.data.to_excel(writer, sheet_name='Datos', index=False)
        rsm.generate_prediction_table().to_excel(writer, sheet_name='Predicciones', index=False)
        rsm.optimize().to_excel(writer, sheet_name='Optimizacion', index=False)
        rsm.calculate_contribution_percentage().to_excel(writer, sheet_name='Contribucion', index=False)
        rsm.calculate_detailed_anova().to_excel(writer, sheet_name='ANOVA', index=False)

    output.seek(0)
    return gr.File.update(value=output, visible=True, filename="resultados_rsm.xlsx")

def download_images():
    if 'rsm' not in globals():
        return None, "Error: Carga los datos y ajusta el modelo primero."

    # Crear un directorio temporal para guardar las imágenes
    temp_dir = "temp_images"
    os.makedirs(temp_dir, exist_ok=True)

    # Generar todas las gráficas y guardarlas como imágenes PNG
    all_figs = rsm.generate_all_plots()
    for i, fig in enumerate(all_figs):
        img_path = os.path.join(temp_dir, f"plot_{i}.png")
        fig.write_image(img_path)

    # Comprimir las imágenes en un archivo ZIP
    zip_buffer = io.BytesIO()
    with ZipFile(zip_buffer, "w") as zip_file:
        for filename in os.listdir(temp_dir):
            file_path = os.path.join(temp_dir, filename)
            zip_file.write(file_path, arcname=filename)

    # Eliminar el directorio temporal
    for filename in os.listdir(temp_dir):
        file_path = os.path.join(temp_dir, filename)
        os.remove(file_path)
    os.rmdir(temp_dir)

    zip_buffer.seek(0)
    return gr.File.update(value=zip_buffer, visible=True, filename="graficos_rsm.zip")

# --- Crear la interfaz de Gradio ---

with gr.Blocks() as demo:
    gr.Markdown("# Optimización de la producción de AIA usando RSM Box-Behnken")

    with gr.Row():
        with gr.Column():
            gr.Markdown("## Configuración del Diseño")
            x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa")
            x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Extracto de Levadura)", value="Extracto_de_Levadura")
            x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Triptófano)", value="Triptofano")
            y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. AIA (ppm))", value="AIA_ppm")
            x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5")
            x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3")
            x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9")
            data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=5, value="""1,-1,-1,0,166.594
2,1,-1,0,177.557
3,-1,1,0,127.261
4,1,1,0,147.573
5,-1,0,-1,188.883
6,1,0,-1,224.527
7,-1,0,1,190.238
8,1,0,1,226.483
9,0,-1,-1,195.550
10,0,1,-1,149.493
11,0,-1,1,187.683
12,0,1,1,148.621
13,0,0,0,278.951
14,0,0,0,297.238
15,0,0,0,280.896""")
            load_button = gr.Button("Cargar Datos")
            

        with gr.Column():
            gr.Markdown("## Datos Cargados")
            data_output = gr.Dataframe(label="Tabla de Datos")

    # Hacer que la sección de análisis sea visible solo después de cargar los datos
    with gr.Row(visible=False) as analysis_row:
        with gr.Column():
            fit_button = gr.Button("Ajustar Modelo y Optimizar")
            download_excel_button = gr.Button("Descargar Tablas en Excel")
            download_images_button = gr.Button("Descargar Gráficos en ZIP")
            gr.Markdown("**Modelo Completo**")
            model_completo_output = gr.HTML()
            pareto_completo_output = gr.Plot()
            gr.Markdown("**Modelo Simplificado**")
            model_simplificado_output = gr.HTML()
            pareto_simplificado_output = gr.Plot()
            equation_output = gr.HTML()
            optimization_table_output = gr.Dataframe(label="Tabla de Optimización")
            prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
            contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución")
            anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
        with gr.Column():
            gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
            fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
            fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
            plot_button = gr.Button("Generar Gráfico")
            rsm_plot_output = gr.Gallery(label="Gráficos RSM", columns=3, preview=True, height="auto")

    load_button.click(
        load_data,
        inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
        outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
    )

    fit_button.click(fit_and_optimize_model, outputs=[model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output])
    
    plot_button.click(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output])

    download_excel_button.click(download_excel, outputs=[gr.File()])
    download_images_button.click(download_images, outputs=[gr.File()])

    # Ejemplo de uso
    gr.Markdown("## Ejemplo de uso")
    gr.Markdown("1. Introduce los nombres de las variables y sus niveles en las cajas de texto correspondientes.")
    gr.Markdown("2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.")
    gr.Markdown("3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.")
    gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
    gr.Markdown("5. Selecciona una variable fija y su nivel en los controles deslizantes.")
    gr.Markdown("6. Haz clic en 'Generar Gráfico' para generar un gráfico de superficie de respuesta.")
    gr.Markdown("7. Haz clic en 'Descargar Tablas en Excel' para obtener un archivo Excel con todas las tablas generadas.")
    gr.Markdown("8. Haz clic en 'Descargar Gráficos en ZIP' para obtener un archivo ZIP con todos los gráficos generados.")

demo.launch()