import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import plotly.graph_objects as go
from scipy.optimize import minimize
import plotly.express as px
from scipy.stats import t, f
import gradio as gr
import io
import zipfile
import tempfile
from datetime import datetime
import docx
from docx.shared import Inches, Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
import os
# --- Global output components ---
model_completo_output = gr.HTML()
pareto_completo_output = gr.Plot()
model_simplificado_output = gr.HTML()
pareto_simplificado_output = gr.Plot()
equation_output = gr.HTML()
optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
rsm_plot_output = gr.Plot()
plot_info = gr.Textbox(label="Información del Gráfico", value="Gráfico 1 de 9", interactive=False)
current_index_state = gr.State(0)
all_figures_state = gr.State([])
current_model_type_state = gr.State('simplified')
model_personalized_output = gr.HTML()
pareto_personalized_output = gr.Plot()
factor_checkboxes = gr.CheckboxGroup(["factors", "x1_sq", "x2_sq", "x3_sq"], label="Términos de Factores", value=["factors", "x1_sq", "x2_sq", "x3_sq"])
interaction_checkboxes = gr.CheckboxGroup(["x1x2", "x1x3", "x2x3"], label="Términos de Interacción")
# --- Clase RSM_BoxBehnken ---
class RSM_BoxBehnken:
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
"""
Inicializa la clase con los datos del diseño Box-Behnken.
"""
self.data = data.copy()
self.model = None
self.model_simplified = None
self.model_personalized = None # For personalized model
self.optimized_results = None
self.optimal_levels = None
self.all_figures_full = [] # Separate lists for different model plots
self.all_figures_simplified = []
self.all_figures_personalized = []
self.x1_name = x1_name
self.x2_name = x2_name
self.x3_name = x3_name
self.y_name = y_name
# Niveles originales de las variables
self.x1_levels = x1_levels
self.x2_levels = x2_levels
self.x3_levels = x3_levels
def get_levels(self, variable_name):
"""
Obtiene los niveles para una variable específica.
"""
levels = {self.x1_name: self.x1_levels, self.x2_name: self.x2_levels, self.x3_name: self.x3_levels}
return levels.get(variable_name)
def fit_model(self):
"""
Ajusta el modelo de segundo orden completo a los datos.
"""
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
self.model = smf.ols(formula, data=self.data).fit()
print("Modelo Completo:")
print(self.model.summary())
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
def fit_simplified_model(self):
"""
Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
"""
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)' # Adjusted formula to include x3^2
self.model_simplified = smf.ols(formula, data=self.data).fit()
print("\nModelo Simplificado:")
print(self.model_simplified.summary())
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
def optimize(self, method='Nelder-Mead'):
"""
Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return
def objective_function(x):
return -self.model_simplified.predict(pd.DataFrame({
self.x1_name: [x[0]],
self.x2_name: [x[1]],
self.x3_name: [x[2]]
})).values[0]
bounds = [(-1, 1), (-1, 1), (-1, 1)]
x0 = [0, 0, 0]
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
self.optimal_levels = self.optimized_results.x
# Convertir niveles óptimos de codificados a naturales
optimal_levels_natural = [
self.coded_to_natural(self.optimal_levels[0], self.x1_name),
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
]
# Crear la tabla de optimización
optimization_table = pd.DataFrame({
'Variable': [self.x1_name, self.x2_name, self.x3_name],
'Nivel Óptimo (Natural)': optimal_levels_natural,
'Nivel Óptimo (Codificado)': self.optimal_levels
})
return optimization_table.round(3) # Redondear a 3 decimales
def fit_personalized_model(self, formula):
"""
Ajusta un modelo personalizado de segundo orden a los datos, usando la formula dada.
"""
self.model_personalized = smf.ols(formula, data=self.data).fit()
print("\nModelo Personalizado:")
print(self.model_personalized.summary())
return self.model_personalized, self.pareto_chart(self.model_personalized, "Pareto - Modelo Personalizado")
def generate_all_plots(self):
"""
Genera todas las gráficas de RSM para todos los modelos.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return
self.all_figures_full = [] # Reset lists for each model type
self.all_figures_simplified = []
self.all_figures_personalized = []
levels_to_plot_natural = { # Levels from data, as before
self.x1_name: sorted(list(set(self.data[self.x1_name]))),
self.x2_name: sorted(list(set(self.data[self.x2_name]))),
self.x3_name: sorted(list(set(self.data[self.x3_name])))
}
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
for level in levels_to_plot_natural[fixed_variable]:
fig_full = self.plot_rsm_individual(fixed_variable, level, model_type='full') # Pass model_type
if fig_full is not None:
self.all_figures_full.append(fig_full)
fig_simplified = self.plot_rsm_individual(fixed_variable, level, model_type='simplified') # Pass model_type
if fig_simplified is not None:
self.all_figures_simplified.append(fig_simplified)
if self.model_personalized is not None: # Generate personalized plots only if model exists
fig_personalized = self.plot_rsm_individual(fixed_variable, level, model_type='personalized') # Pass model_type
if fig_personalized is not None:
self.all_figures_personalized.append(fig_personalized)
def plot_rsm_individual(self, fixed_variable, fixed_level, model_type='simplified'): # Added model_type parameter
"""
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica y modelo.
"""
model_to_use = self.model_simplified # Default to simplified model
model_title_suffix = "(Modelo Simplificado)"
if model_type == 'full':
model_to_use = self.model
model_title_suffix = "(Modelo Completo)"
elif model_type == 'personalized':
if self.model_personalized is None:
print("Error: Modelo personalizado no ajustado.")
return None
model_to_use = self.model_personalized
model_title_suffix = "(Modelo Personalizado)"
if model_to_use is None: # Use model_to_use instead of self.model_simplified
print(f"Error: Ajusta el modelo {model_type} primero.") # More informative error message
return None
# Determinar las variables que varían y sus niveles naturales
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
# Establecer los niveles naturales para las variables que varían
x_natural_levels = self.get_levels(varying_variables[0])
y_natural_levels = self.get_levels(varying_variables[1])
# Crear una malla de puntos para las variables que varían (en unidades naturales)
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
# Convertir la malla de variables naturales a codificadas
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
y_grid_coded = self.natural_to_coded(y_range_natural, varying_variables[1])
# Crear un DataFrame para la predicción con variables codificadas
prediction_data = pd.DataFrame({
varying_variables[0]: x_grid_coded.flatten(),
varying_variables[1]: y_grid_coded.flatten(),
})
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
# Fijar la variable fija en el DataFrame de predicción
fixed_var_levels = self.get_levels(fixed_variable)
if len(fixed_var_levels) == 3: # Box-Behnken design levels
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
elif len(fixed_var_levels) > 0: # Use the closest level if not Box-Behnken
closest_level_coded = self.natural_to_coded(min(fixed_var_levels, key=lambda x:abs(x-fixed_level)), fixed_variable)
prediction_data[fixed_variable] = closest_level_coded
# Calcular los valores predichos
z_pred = model_to_use.predict(prediction_data).values.reshape(x_grid_coded.shape) # Use model_to_use here
# Filtrar por el nivel de la variable fija (en codificado)
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
# Filtrar por niveles válidos en las variables que varían
valid_levels = [-1, 0, 1]
experiments_data = subset_data[
subset_data[varying_variables[0]].isin(valid_levels) &
subset_data[varying_variables[1]].isin(valid_levels)
]
# Convertir coordenadas de experimentos a naturales
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
# Crear el gráfico de superficie con variables naturales en los ejes y transparencia
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
# --- Añadir cuadrícula a la superficie ---
# Líneas en la dirección x
for i in range(x_grid_natural.shape[0]):
fig.add_trace(go.Scatter3d(
x=x_grid_natural[i, :],
y=y_grid_natural[i, :],
z=z_pred[i, :],
mode='lines',
line=dict(color='gray', width=2),
showlegend=False,
hoverinfo='skip'
))
# Líneas en la dirección y
for j in range(x_grid_natural.shape[1]):
fig.add_trace(go.Scatter3d(
x=x_grid_natural[:, j],
y=y_grid_natural[:, j],
z=z_pred[:, j],
mode='lines',
line=dict(color='gray', width=2),
showlegend=False,
hoverinfo='skip'
))
# --- Fin de la adición de la cuadrícula ---
# Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
colors = px.colors.qualitative.Safe
point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]
fig.add_trace(go.Scatter3d(
x=experiments_x_natural,
y=experiments_y_natural,
z=experiments_data[self.y_name].round(3),
mode='markers+text',
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
text=point_labels,
textposition='top center',
name='Experimentos'
))
# Añadir etiquetas y título con variables naturales
fig.update_layout(
scene=dict(
xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
zaxis_title=self.y_name,
),
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}
{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) {model_title_suffix}", # Updated title
height=800,
width=1000,
showlegend=True
)
return fig
# --- Funciones para la Interfaz de Gradio ---
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
try:
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
data_list = [row.split(',') for row in data_str.strip().split('\n')]
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
data_loaded = pd.DataFrame(data_list, columns=column_names).apply(pd.to_numeric, errors='coerce')
if not all(col in data_loaded.columns for col in column_names): raise ValueError("Data format incorrect.")
global rsm, data
data = data_loaded # Assign loaded data to global data variable
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
return data.round(3), gr.update(visible=True)
except Exception as e:
error_message = f"Error loading data: {str(e)}"
print(error_message)
return None, gr.update(visible=False)
def fit_and_optimize_model():
if 'rsm' not in globals(): return [None]*11
model_completo, pareto_completo = rsm.fit_model()
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
optimization_table = rsm.optimize()
equation = rsm.get_simplified_equation()
prediction_table = rsm.generate_prediction_table()
contribution_table = rsm.calculate_contribution_percentage()
anova_table = rsm.calculate_detailed_anova()
rsm.generate_all_plots()
equation_formatted = equation.replace(" + ", "
+ ").replace(" ** ", "^").replace("*", " × ")
equation_formatted = f"### Ecuación del Modelo Simplificado:
{equation_formatted}"
excel_path = rsm.save_tables_to_excel()
zip_path = rsm.save_figures_to_zip()
return (model_completo_output, pareto_completo, model_simplificado_output, pareto_simplificado, equation_output, optimization_table, prediction_table, contribution_table, anova_table, zip_path, excel_path)
def fit_custom_model(factor_checkboxes, interaction_checkboxes, model_personalized_output_component, pareto_personalized_output_component):
if 'rsm' not in globals(): return [None]*2
formula_parts = [rsm.x1_name, rsm.x2_name, rsm.x3_name] if "factors" in factor_checkboxes else []
if "x1_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x1_name}**2)')
if "x2_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x2_name}**2)')
if "x3_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x3_name}**2)')
if "x1x2" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x2_name}')
if "x1x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x3_name}')
if "x2x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x2_name}:{rsm.x3_name}')
formula = f'{rsm.y_name} ~ ' + ' + '.join(formula_parts) if formula_parts else f'{rsm.y_name} ~ 1'
custom_model, pareto_custom = rsm.fit_personalized_model(formula)
rsm.generate_all_plots()
return custom_model.summary().as_html(), pareto_custom
def show_plot(current_index, all_figures, model_type):
figure_list = rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized
if not figure_list: return None, f"No graphs for {model_type}.", current_index
selected_fig = figure_list[current_index]
plot_info_text = f"Gráfico {current_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})"
return selected_fig, plot_info_text, current_index
def navigate_plot(direction, current_index, all_figures, model_type):
figure_list = rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized
if not figure_list: return None, f"No graphs for {model_type}.", current_index
new_index = (current_index - 1) % len(figure_list) if direction == 'left' else (current_index + 1) % len(figure_list)
selected_fig = figure_list[new_index]
plot_info_text = f"Gráfico {new_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})"
return selected_fig, plot_info_text, current_index
def download_current_plot(all_figures, current_index, model_type):
figure_list = rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized
if not figure_list: return None
fig = figure_list[current_index]
img_bytes = rsm.save_fig_to_bytes(fig)
filename = f"Grafico_RSM_{model_type}_{current_index + 1}.png"
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(img_bytes)
return temp_file.name
def download_all_plots_zip(model_type):
if 'rsm' not in globals(): return None
if model_type == 'full': rsm.all_figures = rsm.all_figures_full
elif model_type == 'simplified': rsm.all_figures = rsm.all_figures_simplified
elif model_type == 'personalized': rsm.all_figures = rsm.all_figures_personalized
zip_path = rsm.save_figures_to_zip()
filename = f"Graficos_RSM_{model_type}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
return zip_path
def download_all_tables_excel():
if 'rsm' not in globals(): return None
return rsm.save_tables_to_excel()
def exportar_word(rsm_instance, tables_dict):
return rsm_instance.export_tables_to_word(tables_dict)
def create_gradio_interface():
global model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output, download_all_plots_button, download_excel_button, rsm_plot_output, plot_info, current_index_state, all_figures_state, current_model_type_state, model_personalized_output, pareto_personalized_output, factor_checkboxes, interaction_checkboxes
with gr.Blocks() as demo:
gr.Markdown("# Optimización de la Absorbancia usando RSM")
with gr.Row():
with gr.Column():
gr.Markdown("## Configuración del Diseño")
x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa_g_L")
x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Proteina_Pescado)", value="Proteina_Pescado_g_L")
x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Sulfato_Manganeso)", value="Sulfato_Manganeso_g_L")
y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. Absorbancia)", value="Abs_600nm")
x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="0, 5, 10")
x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0, 1.4, 3.2, 5")
x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.25, 0.5, 0.75")
data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=10, value="""Exp.,Glucosa_g_L,Proteina_Pescado_g_L,Sulfato_Manganeso_g_L,Abs_600nm
1,-1,-1,0,1.576
2,1,-1,0,1.474
3,-1,1,0,1.293
4,1,1,0,1.446
5,-1,0,-1,1.537
6,1,0,-1,1.415
7,-1,0,1,1.481
8,1,0,1,1.419
9,0,-1,-1,1.321
10,0,1,-1,1.224
11,0,-1,1,1.459
12,0,1,1,0.345
13,0,0,0,1.279
14,0,0,0,1.181
15,0,0,0,0.662,
16,-1,-1,0,1.760
17,1,-1,0,1.690
18,-1,1,0,1.485
19,1,1,0,1.658
20,-1,0,-1,1.728
21,1,0,-1,1.594
22,-1,0,1,1.673
23,1,0,1,1.607
24,0,-1,-1,1.531
25,0,1,-1,1.424
26,0,-1,1,1.595
27,0,1,1,0.344
28,0,0,0,1.477
29,0,0,0,1.257
30,0,0,0,0.660,
31,-1,-1,0,1.932
32,1,-1,0,1.780
33,-1,1,0,1.689
34,1,1,0,1.876
35,-1,0,-1,1.885
36,1,0,-1,1.824
37,-1,0,1,1.913
38,1,0,1,1.810
39,0,-1,-1,1.852
40,0,1,-1,1.694
41,0,1,1,1.831
42,0,1,1,0.347
43,0,0,0,1.752
44,0,0,0,1.367
45,0,0,0,0.656""")
load_button = gr.Button("Cargar Datos")
data_dropdown = gr.Dropdown(["All Data"], value="All Data", label="Seleccionar Datos")
with gr.Column():
gr.Markdown("## Datos Cargados")
data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
with gr.Row(visible=False) as analysis_row:
with gr.Column():
fit_button = gr.Button("Ajustar Modelo Simplificado y Completo")
gr.Markdown("**Modelo Completo**")
model_completo_output_comp = model_completo_output # Use global output_components
pareto_completo_output_comp = pareto_completo_output
gr.Markdown("**Modelo Simplificado**")
model_simplificado_output_comp = model_simplificado_output
pareto_simplificado_output_comp = pareto_simplificado_output
gr.Markdown("## Modelo Personalizado")
factor_checkboxes_comp = factor_checkboxes
interaction_checkboxes_comp = interaction_checkboxes
custom_model_button = gr.Button("Ajustar Modelo Personalizado")
model_personalized_output_comp = model_personalized_output
pareto_personalized_output_comp = pareto_personalized_output
gr.Markdown("**Ecuación del Modelo Simplificado**")
equation_output_comp = equation_output
optimization_table_output_comp = optimization_table_output
prediction_table_output_comp = prediction_table_output
contribution_table_output_comp = contribution_table_output
anova_table_output_comp = anova_table_output
gr.Markdown("## Descargar Todas las Tablas")
download_excel_button_comp = download_excel_button
download_word_button = gr.DownloadButton("Descargar Tablas en Word")
with gr.Column():
gr.Markdown("## Gráficos de Superficie de Respuesta")
model_type_radio = gr.Radio(["simplified", "full", "personalized"], value="simplified", label="Tipo de Modelo para Gráficos")
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa_g_L", "Proteina_Pescado_g_L", "Sulfato_Manganeso_g_L"], value="Glucosa_g_L")
fixed_level_input = gr.Slider(label="Nivel de Variable Fija (Natural Units)", minimum=0, maximum=10, step=0.1, value=5.0)
plot_button = gr.Button("Generar Gráficos")
with gr.Row():
left_button = gr.Button("<")
right_button = gr.Button(">")
download_plot_button_comp = gr.DownloadButton("Descargar Gráfico Actual (PNG)") # Defined HERE
download_all_plots_button_comp = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
rsm_plot_output_comp = rsm_plot_output
plot_info_comp = plot_info
current_index_state_comp = current_index_state
all_figures_state_comp = all_figures_state
current_model_type_state_comp = current_model_type_state
load_button.click(load_data, inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input], outputs=[data_output, analysis_row])
fit_button.click(fit_and_optimize_model, inputs=[], outputs=[model_completo_output_comp, pareto_completo_output_comp, model_simplificado_output_comp, pareto_simplificado_output_comp, equation_output_comp, optimization_table_output_comp, prediction_table_output_comp, contribution_table_output_comp, anova_table_output_comp, download_all_plots_button_comp, download_excel_button_comp])
custom_model_button.click(fit_custom_model, inputs=[factor_checkboxes_comp, interaction_checkboxes_comp, model_personalized_output_comp, pareto_personalized_output_comp], outputs=[model_personalized_output_comp, pareto_personalized_output_comp]) # Pass output components as input and output
plot_button.click(lambda fixed_var, fixed_lvl, model_type: show_plot(0, [], model_type) if not hasattr(rsm, 'all_figures_full') or not rsm.all_figures_full else show_plot(0, [], model_type) if model_type == 'full' and not rsm.all_figures_full else show_plot(0, [], model_type) if model_type == 'simplified' and not rsm.all_figures_simplified else show_plot(0, [], model_type) if model_type == 'personalized' and not rsm.all_figures_personalized else show_plot(0, rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized, model_type), inputs=[fixed_variable_input, fixed_level_input, model_type_radio], outputs=[rsm_plot_output_comp, plot_info_comp, current_index_state_comp, current_model_type_state_comp])
left_button.click(lambda current_index, all_figures, model_type: navigate_plot('left', current_index, all_figures, model_type), inputs=[current_index_state_comp, all_figures_state_comp, current_model_type_state_comp], outputs=[rsm_plot_output_comp, plot_info_comp, current_index_state_comp])
right_button.click(lambda current_index, all_figures, model_type: navigate_plot('right', current_index, all_figures, model_type), inputs=[current_index_state_comp, all_figures_state_comp, current_model_type_state_comp], outputs=[rsm_plot_output_comp, plot_info_comp, current_index_state_comp])
download_plot_button.click(download_current_plot, inputs=[all_figures_state_comp, current_index_state_comp, current_model_type_state_comp], outputs=download_plot_button_comp)
download_all_plots_button.click(lambda model_type: download_all_plots_zip(model_type), inputs=[current_model_type_state_comp], outputs=download_all_plots_button_comp)
download_excel_button.click(fn=lambda: download_all_tables_excel(), inputs=[], outputs=download_excel_button_comp)
download_word_button.click(exportar_word, inputs=[gr.State(rsm), gr.State(rsm.get_all_tables())], outputs=download_word_button) # Pass rsm instance and tables as state
return demo
# --- Función Principal ---
def main():
interface = create_gradio_interface()
interface.launch(share=True)
if __name__ == "__main__":
main()