C2MV commited on
Commit
a6dcc94
·
verified ·
1 Parent(s): 10fce6d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -433,12 +433,15 @@ class RSM_BoxBehnken:
433
  # 10. Cuadrados medios
434
  ms_regression = ss_regression / df_regression
435
  ms_residual = ss_residual / df_residual
436
- ms_lack_of_fit = ms_lack_of_fit / df_lack_of_fit if not np.isnan(ss_lack_of_fit) else np.nan
437
- ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(ss_pure_error) else np.nan
 
 
438
 
439
  # 11. Estadístico F y valor p para la falta de ajuste
440
- f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) else np.nan
441
- p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) else np.nan
 
442
 
443
  # 12. Crear la tabla ANOVA detallada
444
  detailed_anova_table = pd.DataFrame({
@@ -665,9 +668,9 @@ def fit_and_optimize_model():
665
  zip_path = rsm.save_figures_to_zip()
666
 
667
  return (
668
- model_completo.summary().as_html(),
669
  pareto_completo,
670
- model_simplificado.summary().as_html(),
671
  pareto_simplificado,
672
  equation_output,
673
  optimization_table,
@@ -796,7 +799,7 @@ def create_gradio_interface():
796
  with gr.Column():
797
  gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
798
  fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa_g_L", "Proteina_Pescado_g_L", "Sulfato_Manganeso_g_L"], value="Glucosa_g_L") # Updated choices
799
- fixed_level_input = gr.Slider(label="Nivel de Variable Fija (Natural Units)", minimum=0, maximum=10, step=0.1, value=5.0) # Updated Slider
800
  plot_button = gr.Button("Generar Gráficos")
801
  with gr.Row():
802
  left_button = gr.Button("<")
 
433
  # 10. Cuadrados medios
434
  ms_regression = ss_regression / df_regression
435
  ms_residual = ss_residual / df_residual
436
+ ms_lack_of_fit = np.nan # Initialize ms_lack_of_fit to nan
437
+ if not np.isnan(df_lack_of_fit) and df_lack_of_fit != 0: # Check df_lack_of_fit is valid
438
+ ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
439
+ ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(df_pure_error) else np.nan
440
 
441
  # 11. Estadístico F y valor p para la falta de ajuste
442
+ f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) and not np.isnan(ms_pure_error) and ms_pure_error != 0 else np.nan # Added nan checks and zero division check
443
+ p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) and not np.isnan(df_lack_of_fit) and not np.isnan(df_pure_error) else np.nan # Added nan checks
444
+
445
 
446
  # 12. Crear la tabla ANOVA detallada
447
  detailed_anova_table = pd.DataFrame({
 
668
  zip_path = rsm.save_figures_to_zip()
669
 
670
  return (
671
+ model_completo_output,
672
  pareto_completo,
673
+ model_simplificado_output,
674
  pareto_simplificado,
675
  equation_output,
676
  optimization_table,
 
799
  with gr.Column():
800
  gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
801
  fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa_g_L", "Proteina_Pescado_g_L", "Sulfato_Manganeso_g_L"], value="Glucosa_g_L") # Updated choices
802
+ fixed_level_input = gr.Slider(label="Nivel de Variable Fija (Natural Units)", minimum=min(data['Glucosa_g_L']), maximum=max(data['Glucosa_g_L']), step=0.1, value=5.0) # Updated Slider - Using data min/max
803
  plot_button = gr.Button("Generar Gráficos")
804
  with gr.Row():
805
  left_button = gr.Button("<")