Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,730 +1,826 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import
|
8 |
-
from
|
9 |
-
from urllib.parse import quote, urlencode
|
10 |
import gradio as gr
|
11 |
-
from bs4 import BeautifulSoup
|
12 |
import io
|
13 |
-
import
|
14 |
-
import
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
self.
|
25 |
-
|
26 |
-
|
27 |
-
#
|
28 |
-
self.
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
]
|
37 |
|
38 |
-
#
|
39 |
-
self.
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
}
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
return None
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
"""Improved method to download paper from Sci-Hub using async requests"""
|
100 |
-
if not doi:
|
101 |
-
logger.warning("DOI not provided")
|
102 |
return None
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
scihub_url = f"{base_url}{self.clean_doi(doi)}"
|
107 |
-
text, headers = await self.fetch_with_headers(session, scihub_url, timeout=15)
|
108 |
-
if not text:
|
109 |
-
continue
|
110 |
-
|
111 |
-
# Search for multiple PDF URL patterns
|
112 |
-
pdf_patterns = [
|
113 |
-
r'(https?://[^\s<>"]+?\.pdf)',
|
114 |
-
r'(https?://[^\s<>"]+?download/[^\s<>"]+)',
|
115 |
-
r'(https?://[^\s<>"]+?\/pdf\/[^\s<>"]+)',
|
116 |
-
]
|
117 |
-
|
118 |
-
pdf_urls = []
|
119 |
-
for pattern in pdf_patterns:
|
120 |
-
pdf_urls.extend(re.findall(pattern, text))
|
121 |
-
|
122 |
-
# Try downloading from found URLs
|
123 |
-
for pdf_url in pdf_urls:
|
124 |
-
try:
|
125 |
-
pdf_response = await session.get(pdf_url, headers=self.headers, timeout=10)
|
126 |
-
# Verify if it's a PDF
|
127 |
-
if 'application/pdf' in pdf_response.headers.get('Content-Type', ''):
|
128 |
-
logger.debug(f"Found PDF from: {pdf_url}")
|
129 |
-
return await pdf_response.read()
|
130 |
-
except Exception as e:
|
131 |
-
logger.debug(f"Error downloading PDF from {pdf_url}: {e}")
|
132 |
-
|
133 |
-
except Exception as e:
|
134 |
-
logger.debug(f"Error trying to download {doi} from {base_url}: {e}")
|
135 |
|
136 |
-
return
|
137 |
|
138 |
-
|
139 |
-
"""
|
140 |
-
|
|
|
|
|
|
|
141 |
return None
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
if
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
return None
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
return None
|
180 |
|
181 |
-
|
|
|
182 |
|
183 |
-
|
184 |
-
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
pdf_response = await session.get(pdf_url, headers=self.headers, timeout=10)
|
189 |
-
if 'application/pdf' in pdf_response.headers.get('Content-Type', ''):
|
190 |
-
logger.debug(f"Found PDF from: {pdf_url}")
|
191 |
-
return await pdf_response.read()
|
192 |
-
except Exception as e:
|
193 |
-
logger.debug(f"Google Scholar error for {doi}: {e}")
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
async def download_paper_crossref_async(self, session, doi):
|
198 |
-
"""Alternative search method using Crossref"""
|
199 |
-
if not doi:
|
200 |
-
return None
|
201 |
-
|
202 |
-
try:
|
203 |
-
# Search for open access link
|
204 |
-
url = f"https://api.crossref.org/works/{doi}"
|
205 |
-
response = await session.get(url, headers=self.headers, timeout=10)
|
206 |
-
|
207 |
-
if response.status == 200:
|
208 |
-
data = await response.json()
|
209 |
-
work = data.get('message', {})
|
210 |
-
|
211 |
-
# Search for open access links
|
212 |
-
links = work.get('link', [])
|
213 |
-
for link in links:
|
214 |
-
if link.get('content-type') == 'application/pdf':
|
215 |
-
pdf_url = link.get('URL')
|
216 |
-
if pdf_url:
|
217 |
-
pdf_response = await session.get(pdf_url, headers=self.headers)
|
218 |
-
if 'application/pdf' in pdf_response.headers.get('Content-Type', ''):
|
219 |
-
logger.debug(f"Found PDF from: {pdf_url}")
|
220 |
-
return await pdf_response.read()
|
221 |
-
|
222 |
-
except Exception as e:
|
223 |
-
logger.debug(f"Crossref error for {doi}: {e}")
|
224 |
-
|
225 |
-
return None
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
retries = 0
|
231 |
-
delay = initial_delay
|
232 |
-
|
233 |
-
async with aiohttp.ClientSession() as session:
|
234 |
-
while retries < max_retries and not pdf_content:
|
235 |
-
try:
|
236 |
-
pdf_content = (
|
237 |
-
await self.download_paper_direct_doi_async(session, doi) or
|
238 |
-
await self.download_paper_scihub_async(session, doi) or
|
239 |
-
await self.download_paper_libgen_async(session, doi) or
|
240 |
-
await self.download_paper_google_scholar_async(session, doi) or
|
241 |
-
await self.download_paper_crossref_async(session, doi)
|
242 |
-
|
243 |
-
)
|
244 |
-
if pdf_content:
|
245 |
-
return pdf_content
|
246 |
-
except Exception as e:
|
247 |
-
logger.error(f"Error in download attempt {retries + 1} for DOI {doi}: {e}")
|
248 |
-
|
249 |
-
if not pdf_content:
|
250 |
-
retries += 1
|
251 |
-
logger.warning(f"Retry attempt {retries} for DOI: {doi} after {delay} seconds")
|
252 |
-
await asyncio.sleep(delay)
|
253 |
-
delay *= 2 # Exponential backoff
|
254 |
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
def
|
258 |
-
"""
|
259 |
-
|
260 |
-
|
|
|
261 |
return None
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
return None
|
302 |
-
|
303 |
-
def download_paper_libgen(self, doi):
|
304 |
-
"""Download from Libgen, handles the query and the redirection"""
|
305 |
-
if not doi:
|
306 |
return None
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
# Find the link using a specific selector
|
321 |
-
links = soup.select('table.c > tbody > tr:nth-child(2) > td:nth-child(1) > a')
|
322 |
-
|
323 |
-
if links:
|
324 |
-
link = links[0]
|
325 |
-
pdf_url = link['href']
|
326 |
-
pdf_response = requests.get(pdf_url, headers=self.headers, allow_redirects=True, timeout=10)
|
327 |
-
if 'application/pdf' in pdf_response.headers.get('Content-Type', ''):
|
328 |
-
logger.debug(f"Found PDF from: {pdf_url}")
|
329 |
-
return pdf_response.content
|
330 |
-
|
331 |
-
except Exception as e:
|
332 |
-
logger.debug(f"Error trying to download {doi} from libgen: {e}")
|
333 |
-
return None
|
334 |
-
|
335 |
-
def download_paper_google_scholar(self, doi):
|
336 |
-
"""Search google scholar to find an article with the given doi, try to get the pdf"""
|
337 |
-
if not doi:
|
338 |
-
return None
|
339 |
|
340 |
-
|
341 |
-
query = f'doi:"{doi}"'
|
342 |
-
params = {'q': query}
|
343 |
-
url = f'https://scholar.google.com/scholar?{urlencode(params)}'
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
|
|
352 |
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
|
|
|
|
|
|
|
|
|
|
362 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
try:
|
370 |
-
# Search for open access link
|
371 |
-
url = f"https://api.crossref.org/works/{doi}"
|
372 |
-
response = requests.get(url, headers=self.headers, timeout=10)
|
373 |
-
|
374 |
-
if response.status_code == 200:
|
375 |
-
data = response.json()
|
376 |
-
work = data.get('message', {})
|
377 |
-
|
378 |
-
# Search for open access links
|
379 |
-
links = work.get('link', [])
|
380 |
-
for link in links:
|
381 |
-
if link.get('content-type') == 'application/pdf':
|
382 |
-
pdf_url = link.get('URL')
|
383 |
-
if pdf_url:
|
384 |
-
pdf_response = requests.get(pdf_url, headers=self.headers)
|
385 |
-
if 'application/pdf' in pdf_response.headers.get('Content-Type', ''):
|
386 |
-
logger.debug(f"Found PDF from: {pdf_url}")
|
387 |
-
return pdf_response.content
|
388 |
-
|
389 |
-
except Exception as e:
|
390 |
-
logger.debug(f"Crossref error for {doi}: {e}")
|
391 |
-
|
392 |
return None
|
|
|
|
|
|
|
393 |
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
while retries < max_retries and not pdf_content:
|
401 |
-
try:
|
402 |
-
pdf_content = (
|
403 |
-
self.download_paper_scihub(doi) or
|
404 |
-
self.download_paper_libgen(doi) or
|
405 |
-
self.download_paper_google_scholar(doi) or
|
406 |
-
self.download_paper_crossref(doi)
|
407 |
-
|
408 |
-
)
|
409 |
-
|
410 |
-
if pdf_content:
|
411 |
-
return pdf_content
|
412 |
-
except Exception as e:
|
413 |
-
logger.error(f"Error in download attempt {retries + 1} for DOI {doi}: {e}")
|
414 |
-
|
415 |
-
if not pdf_content:
|
416 |
-
retries += 1
|
417 |
-
logger.warning(f"Retry attempt {retries} for DOI: {doi} after {delay} seconds")
|
418 |
-
time.sleep(delay)
|
419 |
-
delay *= 2 # Exponential backoff
|
420 |
-
|
421 |
return None
|
|
|
|
|
|
|
422 |
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
failed_dois = []
|
506 |
-
downloaded_links = []
|
507 |
-
|
508 |
-
# Download PDFs
|
509 |
-
for doi in tqdm(dois, desc="Downloading papers"):
|
510 |
-
try:
|
511 |
-
# Try to download with multiple methods with retries
|
512 |
-
pdf_content = self.download_with_retry(doi)
|
513 |
-
|
514 |
-
# Save PDF
|
515 |
-
if pdf_content:
|
516 |
-
if doi is None:
|
517 |
-
return None, "Error: DOI not provided", "Error: DOI not provided", None
|
518 |
-
filename = f"{str(doi).replace('/', '_').replace('.', '_')}.pdf"
|
519 |
-
filepath = os.path.join(self.output_dir, filename)
|
520 |
-
|
521 |
-
with open(filepath, 'wb') as f:
|
522 |
-
f.write(pdf_content)
|
523 |
-
|
524 |
-
downloaded_files.append(filepath)
|
525 |
-
downloaded_links.append(f'<div style="display: flex; align-items: center;">✓ <a href="https://doi.org/{doi}">{doi}</a> <button onclick="copyLink(this)">Copy</button></div>')
|
526 |
-
logger.info(f"Successfully downloaded: {filename}")
|
527 |
-
else:
|
528 |
-
failed_dois.append(f'<div style="display: flex; align-items: center;">❌ <a href="https://doi.org/{doi}">{doi}</a> <button onclick="copyLink(this)">Copy</button></div>')
|
529 |
-
|
530 |
-
except Exception as e:
|
531 |
-
failed_dois.append(f'<div style="display: flex; align-items: center;">❌ <a href="https://doi.org/{doi}">{doi}</a> <button onclick="copyLink(this)">Copy</button></div>')
|
532 |
-
logger.error(f"Error processing {doi}: {e}")
|
533 |
-
|
534 |
-
# Create ZIP of downloaded papers
|
535 |
-
if downloaded_files:
|
536 |
-
zip_filename = 'papers.zip'
|
537 |
-
with zipfile.ZipFile(zip_filename, 'w') as zipf:
|
538 |
-
for file_path in downloaded_files:
|
539 |
-
zipf.write(file_path, arcname=os.path.basename(file_path))
|
540 |
-
logger.info(f"ZIP file created: {zip_filename}")
|
541 |
-
|
542 |
-
return zip_filename, "\n".join(downloaded_links), "\n".join(failed_dois), None
|
543 |
-
|
544 |
-
async def process_bibtex_async(self, bib_file):
|
545 |
-
"""Process BibTeX file and download papers with multiple strategies"""
|
546 |
-
# Read BibTeX file content from the uploaded object
|
547 |
-
try:
|
548 |
-
with open(bib_file.name, 'r', encoding='utf-8') as f:
|
549 |
-
bib_content = f.read()
|
550 |
-
except Exception as e:
|
551 |
-
logger.error(f"Error reading uploaded file {bib_file.name}: {e}")
|
552 |
-
return None, f"Error reading uploaded file {bib_file.name}: {e}", f"Error reading uploaded file {bib_file.name}: {e}", None
|
553 |
-
|
554 |
-
# Parse BibTeX data
|
555 |
-
try:
|
556 |
-
bib_database = bibtexparser.loads(bib_content)
|
557 |
-
except Exception as e:
|
558 |
-
logger.error(f"Error parsing BibTeX data: {e}")
|
559 |
-
return None, f"Error parsing BibTeX data: {e}", f"Error parsing BibTeX data: {e}", None
|
560 |
-
|
561 |
-
# Extract DOIs
|
562 |
-
dois = [entry.get('doi') for entry in bib_database.entries if entry.get('doi')]
|
563 |
-
logger.info(f"Found {len(dois)} DOIs to download")
|
564 |
-
|
565 |
-
# Result lists
|
566 |
-
downloaded_files = []
|
567 |
-
failed_dois = []
|
568 |
-
downloaded_links = []
|
569 |
-
|
570 |
-
# Download PDFs
|
571 |
-
for doi in tqdm(dois, desc="Downloading papers"):
|
572 |
-
try:
|
573 |
-
# Try to download with multiple methods with retries
|
574 |
-
pdf_content = await self.download_with_retry_async(doi)
|
575 |
-
|
576 |
-
# Save PDF
|
577 |
-
if pdf_content:
|
578 |
-
if doi is None:
|
579 |
-
return None, "Error: DOI not provided", "Error: DOI not provided", None
|
580 |
-
filename = f"{str(doi).replace('/', '_').replace('.', '_')}.pdf"
|
581 |
-
filepath = os.path.join(self.output_dir, filename)
|
582 |
-
|
583 |
-
with open(filepath, 'wb') as f:
|
584 |
-
f.write(pdf_content)
|
585 |
-
|
586 |
-
downloaded_files.append(filepath)
|
587 |
-
downloaded_links.append(f'<div style="display: flex; align-items: center;">✓ <a href="https://doi.org/{doi}">{doi}</a> <button onclick="copyLink(this)">Copy</button></div>')
|
588 |
-
logger.info(f"Successfully downloaded: {filename}")
|
589 |
-
else:
|
590 |
-
failed_dois.append(f'<div style="display: flex; align-items: center;">❌ <a href="https://doi.org/{doi}">{doi}</a> <button onclick="copyLink(this)">Copy</button></div>')
|
591 |
-
|
592 |
-
except Exception as e:
|
593 |
-
failed_dois.append(f'<div style="display: flex; align-items: center;">❌ <a href="https://doi.org/{doi}">{doi}</a> <button onclick="copyLink(this)">Copy</button></div>')
|
594 |
-
logger.error(f"Error processing {doi}: {e}")
|
595 |
-
|
596 |
-
# Create ZIP of downloaded papers
|
597 |
-
if downloaded_files:
|
598 |
-
zip_filename = 'papers.zip'
|
599 |
-
with zipfile.ZipFile(zip_filename, 'w') as zipf:
|
600 |
-
for file_path in downloaded_files:
|
601 |
-
zipf.write(file_path, arcname=os.path.basename(file_path))
|
602 |
-
logger.info(f"ZIP file created: {zip_filename}")
|
603 |
-
|
604 |
-
return zip_filename, "\n".join(downloaded_links), "\n".join(failed_dois), None
|
605 |
-
|
606 |
-
def create_gradio_interface():
|
607 |
-
"""Create Gradio interface for Paper Downloader"""
|
608 |
-
downloader = PaperDownloader()
|
609 |
-
|
610 |
-
async def download_papers(bib_file, doi_input, dois_input):
|
611 |
-
if bib_file:
|
612 |
-
# Check file type
|
613 |
-
if not bib_file.name.lower().endswith('.bib'):
|
614 |
-
return None, "Error: Please upload a .bib file", "Error: Please upload a .bib file", None
|
615 |
-
|
616 |
-
zip_path, downloaded_dois, failed_dois, _ = await downloader.process_bibtex_async(bib_file)
|
617 |
-
return zip_path, downloaded_dois, failed_dois, None
|
618 |
-
elif doi_input:
|
619 |
-
filepath, message, failed_doi = downloader.download_single_doi(doi_input)
|
620 |
-
return None, message, failed_doi, filepath
|
621 |
-
elif dois_input:
|
622 |
-
zip_path, downloaded_dois, failed_dois = downloader.download_multiple_dois(dois_input)
|
623 |
-
return zip_path, downloaded_dois, failed_dois, None
|
624 |
-
else:
|
625 |
-
return None, "Please provide a .bib file, a single DOI, or a list of DOIs", "Please provide a .bib file, a single DOI, or a list of DOIs", None
|
626 |
-
|
627 |
-
# Gradio Interface
|
628 |
-
interface = gr.Interface(
|
629 |
-
fn=download_papers,
|
630 |
-
inputs=[
|
631 |
-
gr.File(file_types=['.bib'], label="Upload BibTeX File"),
|
632 |
-
gr.Textbox(label="Enter Single DOI", placeholder="10.xxxx/xxxx"),
|
633 |
-
gr.Textbox(label="Enter Multiple DOIs (one per line)", placeholder="10.xxxx/xxxx\n10.yyyy/yyyy\n...")
|
634 |
-
],
|
635 |
outputs=[
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
</div>
|
649 |
-
<div style='border: 1px solid #ddd; padding: 5px; border-radius: 5px;'>
|
650 |
-
<div id="failed-dois"></div>
|
651 |
-
</div>
|
652 |
-
"""),
|
653 |
-
gr.File(label="Downloaded Single PDF")
|
654 |
-
],
|
655 |
-
title="🔬 Academic Paper Batch Downloader",
|
656 |
-
description="Upload a BibTeX file or enter DOIs to download PDFs. We'll attempt to fetch PDFs from multiple sources like Sci-Hub, Libgen, Google Scholar and Crossref. You can use any of the three inputs at any moment.",
|
657 |
-
theme="Hev832/Applio",
|
658 |
-
examples=[
|
659 |
-
["example.bib", None, None], # Bibtex File
|
660 |
-
[None, "10.1038/nature12373", None], # Single DOI
|
661 |
-
[None, None, "10.1109/5.771073\n10.3390/horticulturae8080677"], # Multiple DOIs
|
662 |
-
],
|
663 |
-
css="""
|
664 |
-
.gradio-container {
|
665 |
-
background-color: black;
|
666 |
-
}
|
667 |
-
.gr-interface {
|
668 |
-
max-width: 800px;
|
669 |
-
margin: 0 auto;
|
670 |
-
}
|
671 |
-
.gr-box {
|
672 |
-
background-color: black;
|
673 |
-
border-radius: 10px;
|
674 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
675 |
-
}
|
676 |
-
.output-text a {
|
677 |
-
color: #007bff; /* Blue color for hyperlinks */
|
678 |
-
}
|
679 |
-
""",
|
680 |
-
cache_examples=False,
|
681 |
)
|
682 |
-
|
683 |
-
# Add Javascript to update HTML
|
684 |
-
interface.load = """
|
685 |
-
function(downloaded_dois, failed_dois) {
|
686 |
-
let downloaded_html = '';
|
687 |
-
downloaded_dois.split('\\n').filter(Boolean).forEach(doi => {
|
688 |
-
downloaded_html += doi + '<br>';
|
689 |
-
});
|
690 |
-
document.querySelector("#downloaded-dois").innerHTML = downloaded_html;
|
691 |
-
|
692 |
-
let failed_html = '';
|
693 |
-
failed_dois.split('\\n').filter(Boolean).forEach(doi => {
|
694 |
-
failed_html += doi + '<br>';
|
695 |
-
});
|
696 |
-
document.querySelector("#failed-dois").innerHTML = failed_html;
|
697 |
-
return [downloaded_html, failed_html];
|
698 |
-
}
|
699 |
-
"""
|
700 |
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import statsmodels.formula.api as smf
|
4 |
+
import statsmodels.api as sm
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from scipy.optimize import minimize
|
7 |
+
import plotly.express as px
|
8 |
+
from scipy.stats import t, f
|
|
|
9 |
import gradio as gr
|
|
|
10 |
import io
|
11 |
+
import zipfile
|
12 |
+
import tempfile
|
13 |
+
from datetime import datetime
|
14 |
+
|
15 |
+
class RSM_BoxBehnken:
|
16 |
+
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
17 |
+
"""
|
18 |
+
Inicializa la clase con los datos del diseño Box-Behnken.
|
19 |
+
"""
|
20 |
+
self.data = data.copy()
|
21 |
+
self.model = None
|
22 |
+
self.model_simplified = None
|
23 |
+
self.optimized_results = None
|
24 |
+
self.optimal_levels = None
|
25 |
+
self.all_figures = [] # Lista para almacenar las figuras
|
26 |
+
self.x1_name = x1_name
|
27 |
+
self.x2_name = x2_name
|
28 |
+
self.x3_name = x3_name
|
29 |
+
self.y_name = y_name
|
30 |
+
|
31 |
+
# Niveles originales de las variables
|
32 |
+
self.x1_levels = x1_levels
|
33 |
+
self.x2_levels = x2_levels
|
34 |
+
self.x3_levels = x3_levels
|
35 |
+
|
36 |
+
def get_levels(self, variable_name):
|
37 |
+
"""
|
38 |
+
Obtiene los niveles para una variable específica.
|
39 |
+
"""
|
40 |
+
if variable_name == self.x1_name:
|
41 |
+
return self.x1_levels
|
42 |
+
elif variable_name == self.x2_name:
|
43 |
+
return self.x2_levels
|
44 |
+
elif variable_name == self.x3_name:
|
45 |
+
return self.x3_levels
|
46 |
+
else:
|
47 |
+
raise ValueError(f"Variable desconocida: {variable_name}")
|
48 |
+
|
49 |
+
def fit_model(self):
|
50 |
+
"""
|
51 |
+
Ajusta el modelo de segundo orden completo a los datos.
|
52 |
+
"""
|
53 |
+
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
54 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
|
55 |
+
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
|
56 |
+
self.model = smf.ols(formula, data=self.data).fit()
|
57 |
+
print("Modelo Completo:")
|
58 |
+
print(self.model.summary())
|
59 |
+
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
60 |
+
|
61 |
+
def fit_simplified_model(self):
|
62 |
+
"""
|
63 |
+
Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
|
64 |
+
"""
|
65 |
+
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
|
66 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
67 |
+
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
68 |
+
print("\nModelo Simplificado:")
|
69 |
+
print(self.model_simplified.summary())
|
70 |
+
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
71 |
+
|
72 |
+
def optimize(self, method='Nelder-Mead'):
|
73 |
+
"""
|
74 |
+
Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
|
75 |
+
"""
|
76 |
+
if self.model_simplified is None:
|
77 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
78 |
+
return
|
79 |
+
|
80 |
+
def objective_function(x):
|
81 |
+
return -self.model_simplified.predict(pd.DataFrame({
|
82 |
+
self.x1_name: [x[0]],
|
83 |
+
self.x2_name: [x[1]],
|
84 |
+
self.x3_name: [x[2]]
|
85 |
+
})).values[0]
|
86 |
+
|
87 |
+
bounds = [(-1, 1), (-1, 1), (-1, 1)]
|
88 |
+
x0 = [0, 0, 0]
|
89 |
+
|
90 |
+
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
91 |
+
self.optimal_levels = self.optimized_results.x
|
92 |
+
|
93 |
+
# Convertir niveles óptimos de codificados a naturales
|
94 |
+
optimal_levels_natural = [
|
95 |
+
self.coded_to_natural(self.optimal_levels[0], self.x1_name),
|
96 |
+
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
|
97 |
+
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
|
98 |
+
]
|
99 |
+
# Crear la tabla de optimización
|
100 |
+
optimization_table = pd.DataFrame({
|
101 |
+
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
102 |
+
'Nivel Óptimo (Natural)': optimal_levels_natural,
|
103 |
+
'Nivel Óptimo (Codificado)': self.optimal_levels
|
104 |
+
})
|
105 |
+
|
106 |
+
return optimization_table.round(3) # Redondear a 3 decimales
|
107 |
+
|
108 |
+
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
109 |
+
"""
|
110 |
+
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica.
|
111 |
+
"""
|
112 |
+
if self.model_simplified is None:
|
113 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
114 |
+
return None
|
115 |
+
|
116 |
+
# Determinar las variables que varían y sus niveles naturales
|
117 |
+
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
118 |
+
|
119 |
+
# Establecer los niveles naturales para las variables que varían
|
120 |
+
x_natural_levels = self.get_levels(varying_variables[0])
|
121 |
+
y_natural_levels = self.get_levels(varying_variables[1])
|
122 |
+
|
123 |
+
# Crear una malla de puntos para las variables que varían (en unidades naturales)
|
124 |
+
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
|
125 |
+
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
|
126 |
+
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
|
127 |
+
|
128 |
+
# Convertir la malla de variables naturales a codificadas
|
129 |
+
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
130 |
+
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
|
131 |
+
|
132 |
+
# Crear un DataFrame para la predicción con variables codificadas
|
133 |
+
prediction_data = pd.DataFrame({
|
134 |
+
varying_variables[0]: x_grid_coded.flatten(),
|
135 |
+
varying_variables[1]: y_grid_coded.flatten(),
|
136 |
+
})
|
137 |
+
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
138 |
+
|
139 |
+
# Calcular los valores predichos
|
140 |
+
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
|
141 |
+
|
142 |
+
# Filtrar por el nivel de la variable fija (en codificado)
|
143 |
+
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
144 |
+
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
145 |
+
|
146 |
+
# Filtrar por niveles válidos en las variables que varían
|
147 |
+
valid_levels = [-1, 0, 1]
|
148 |
+
experiments_data = subset_data[
|
149 |
+
subset_data[varying_variables[0]].isin(valid_levels) &
|
150 |
+
subset_data[varying_variables[1]].isin(valid_levels)
|
151 |
]
|
152 |
|
153 |
+
# Convertir coordenadas de experimentos a naturales
|
154 |
+
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
155 |
+
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
156 |
+
|
157 |
+
# Crear el gráfico de superficie con variables naturales en los ejes y transparencia
|
158 |
+
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
159 |
+
|
160 |
+
# --- Añadir cuadrícula a la superficie ---
|
161 |
+
# Líneas en la dirección x
|
162 |
+
for i in range(x_grid_natural.shape[0]):
|
163 |
+
fig.add_trace(go.Scatter3d(
|
164 |
+
x=x_grid_natural[i, :],
|
165 |
+
y=y_grid_natural[i, :],
|
166 |
+
z=z_pred[i, :],
|
167 |
+
mode='lines',
|
168 |
+
line=dict(color='gray', width=2),
|
169 |
+
showlegend=False,
|
170 |
+
hoverinfo='skip'
|
171 |
+
))
|
172 |
+
# Líneas en la dirección y
|
173 |
+
for j in range(x_grid_natural.shape[1]):
|
174 |
+
fig.add_trace(go.Scatter3d(
|
175 |
+
x=x_grid_natural[:, j],
|
176 |
+
y=y_grid_natural[:, j],
|
177 |
+
z=z_pred[:, j],
|
178 |
+
mode='lines',
|
179 |
+
line=dict(color='gray', width=2),
|
180 |
+
showlegend=False,
|
181 |
+
hoverinfo='skip'
|
182 |
+
))
|
183 |
+
|
184 |
+
# --- Fin de la adición de la cuadrícula ---
|
185 |
+
|
186 |
+
# Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
|
187 |
+
colors = px.colors.qualitative.Safe
|
188 |
+
point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]
|
189 |
+
|
190 |
+
fig.add_trace(go.Scatter3d(
|
191 |
+
x=experiments_x_natural,
|
192 |
+
y=experiments_y_natural,
|
193 |
+
z=experiments_data[self.y_name].round(3),
|
194 |
+
mode='markers+text',
|
195 |
+
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
|
196 |
+
text=point_labels,
|
197 |
+
textposition='top center',
|
198 |
+
name='Experimentos'
|
199 |
+
))
|
200 |
+
|
201 |
+
# Añadir etiquetas y título con variables naturales
|
202 |
+
fig.update_layout(
|
203 |
+
scene=dict(
|
204 |
+
xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
|
205 |
+
yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
|
206 |
+
zaxis_title=self.y_name,
|
207 |
+
),
|
208 |
+
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) (Modelo Simplificado)</sup>",
|
209 |
+
height=800,
|
210 |
+
width=1000,
|
211 |
+
showlegend=True
|
212 |
+
)
|
213 |
+
return fig
|
214 |
+
|
215 |
+
def get_units(self, variable_name):
|
216 |
+
"""
|
217 |
+
Define las unidades de las variables para etiquetas.
|
218 |
+
Puedes personalizar este método según tus necesidades.
|
219 |
+
"""
|
220 |
+
units = {
|
221 |
+
'Glucosa': 'g/L',
|
222 |
+
'Extracto_de_Levadura': 'g/L',
|
223 |
+
'Triptofano': 'g/L',
|
224 |
+
'AIA_ppm': 'ppm'
|
225 |
+
}
|
226 |
+
return units.get(variable_name, '')
|
227 |
+
|
228 |
+
def generate_all_plots(self):
|
229 |
+
"""
|
230 |
+
Genera todas las gráficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
|
231 |
+
Almacena las figuras en self.all_figures.
|
232 |
+
"""
|
233 |
+
if self.model_simplified is None:
|
234 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
235 |
+
return
|
236 |
+
|
237 |
+
self.all_figures = [] # Resetear la lista de figuras
|
238 |
+
|
239 |
+
# Niveles naturales para graficar
|
240 |
+
levels_to_plot_natural = {
|
241 |
+
self.x1_name: self.x1_levels,
|
242 |
+
self.x2_name: self.x2_levels,
|
243 |
+
self.x3_name: self.x3_levels
|
244 |
}
|
245 |
|
246 |
+
# Generar y almacenar gráficos individuales
|
247 |
+
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
248 |
+
for level in levels_to_plot_natural[fixed_variable]:
|
249 |
+
fig = self.plot_rsm_individual(fixed_variable, level)
|
250 |
+
if fig is not None:
|
251 |
+
self.all_figures.append(fig)
|
252 |
+
|
253 |
+
def coded_to_natural(self, coded_value, variable_name):
|
254 |
+
"""Convierte un valor codificado a su valor natural."""
|
255 |
+
levels = self.get_levels(variable_name)
|
256 |
+
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
|
257 |
+
|
258 |
+
def natural_to_coded(self, natural_value, variable_name):
|
259 |
+
"""Convierte un valor natural a su valor codificado."""
|
260 |
+
levels = self.get_levels(variable_name)
|
261 |
+
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
|
262 |
+
|
263 |
+
def pareto_chart(self, model, title):
|
264 |
+
"""
|
265 |
+
Genera un diagrama de Pareto para los efectos estandarizados de un modelo,
|
266 |
+
incluyendo la línea de significancia.
|
267 |
+
"""
|
268 |
+
# Calcular los efectos estandarizados
|
269 |
+
tvalues = model.tvalues[1:] # Excluir la Intercept
|
270 |
+
abs_tvalues = np.abs(tvalues)
|
271 |
+
sorted_idx = np.argsort(abs_tvalues)[::-1]
|
272 |
+
sorted_tvalues = abs_tvalues[sorted_idx]
|
273 |
+
sorted_names = tvalues.index[sorted_idx]
|
274 |
+
|
275 |
+
# Calcular el valor crítico de t para la línea de significancia
|
276 |
+
alpha = 0.05 # Nivel de significancia
|
277 |
+
dof = model.df_resid # Grados de libertad residuales
|
278 |
+
t_critical = t.ppf(1 - alpha / 2, dof)
|
279 |
+
|
280 |
+
# Crear el diagrama de Pareto
|
281 |
+
fig = px.bar(
|
282 |
+
x=sorted_tvalues.round(3),
|
283 |
+
y=sorted_names,
|
284 |
+
orientation='h',
|
285 |
+
labels={'x': 'Efecto Estandarizado', 'y': 'Término'},
|
286 |
+
title=title
|
287 |
+
)
|
288 |
+
fig.update_yaxes(autorange="reversed")
|
289 |
+
|
290 |
+
# Agregar la línea de significancia
|
291 |
+
fig.add_vline(x=t_critical, line_dash="dot",
|
292 |
+
annotation_text=f"t crítico = {t_critical:.3f}",
|
293 |
+
annotation_position="bottom right")
|
294 |
+
|
295 |
+
return fig
|
296 |
+
|
297 |
+
def get_simplified_equation(self):
|
298 |
+
"""
|
299 |
+
Imprime la ecuación del modelo simplificado.
|
300 |
+
"""
|
301 |
+
if self.model_simplified is None:
|
302 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
303 |
return None
|
304 |
|
305 |
+
coefficients = self.model_simplified.params
|
306 |
+
equation = f"{self.y_name} = {coefficients['Intercept']:.3f}"
|
307 |
+
|
308 |
+
for term, coef in coefficients.items():
|
309 |
+
if term != 'Intercept':
|
310 |
+
if term == f'{self.x1_name}':
|
311 |
+
equation += f" + {coef:.3f}*{self.x1_name}"
|
312 |
+
elif term == f'{self.x2_name}':
|
313 |
+
equation += f" + {coef:.3f}*{self.x2_name}"
|
314 |
+
elif term == f'{self.x3_name}':
|
315 |
+
equation += f" + {coef:.3f}*{self.x3_name}"
|
316 |
+
elif term == f'I({self.x1_name} ** 2)':
|
317 |
+
equation += f" + {coef:.3f}*{self.x1_name}^2"
|
318 |
+
elif term == f'I({self.x2_name} ** 2)':
|
319 |
+
equation += f" + {coef:.3f}*{self.x2_name}^2"
|
320 |
+
elif term == f'I({self.x3_name} ** 2)':
|
321 |
+
equation += f" + {coef:.3f}*{self.x3_name}^2"
|
322 |
+
|
323 |
+
return equation
|
324 |
+
|
325 |
+
def generate_prediction_table(self):
|
326 |
+
"""
|
327 |
+
Genera una tabla con los valores actuales, predichos y residuales.
|
328 |
+
"""
|
329 |
+
if self.model_simplified is None:
|
330 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
|
|
|
|
|
|
331 |
return None
|
332 |
|
333 |
+
self.data['Predicho'] = self.model_simplified.predict(self.data)
|
334 |
+
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
+
return self.data[[self.y_name, 'Predicho', 'Residual']].round(3)
|
337 |
|
338 |
+
def calculate_contribution_percentage(self):
|
339 |
+
"""
|
340 |
+
Calcula el porcentaje de contribución de cada factor a la variabilidad de la respuesta (AIA).
|
341 |
+
"""
|
342 |
+
if self.model_simplified is None:
|
343 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
344 |
return None
|
345 |
|
346 |
+
# ANOVA del modelo simplificado
|
347 |
+
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
348 |
+
|
349 |
+
# Suma de cuadrados total
|
350 |
+
ss_total = anova_table['sum_sq'].sum()
|
351 |
+
|
352 |
+
# Crear tabla de contribución
|
353 |
+
contribution_table = pd.DataFrame({
|
354 |
+
'Factor': [],
|
355 |
+
'Suma de Cuadrados': [],
|
356 |
+
'% Contribución': []
|
357 |
+
})
|
358 |
+
|
359 |
+
# Calcular porcentaje de contribución para cada factor
|
360 |
+
for index, row in anova_table.iterrows():
|
361 |
+
if index != 'Residual':
|
362 |
+
factor_name = index
|
363 |
+
if factor_name == f'I({self.x1_name} ** 2)':
|
364 |
+
factor_name = f'{self.x1_name}^2'
|
365 |
+
elif factor_name == f'I({self.x2_name} ** 2)':
|
366 |
+
factor_name = f'{self.x2_name}^2'
|
367 |
+
elif factor_name == f'I({self.x3_name} ** 2)':
|
368 |
+
factor_name = f'{self.x3_name}^2'
|
369 |
+
|
370 |
+
ss_factor = row['sum_sq']
|
371 |
+
contribution_percentage = (ss_factor / ss_total) * 100
|
372 |
+
|
373 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
374 |
+
'Factor': [factor_name],
|
375 |
+
'Suma de Cuadrados': [ss_factor],
|
376 |
+
'% Contribución': [contribution_percentage]
|
377 |
+
})], ignore_index=True)
|
378 |
+
|
379 |
+
return contribution_table.round(3)
|
380 |
+
|
381 |
+
def calculate_detailed_anova(self):
|
382 |
+
"""
|
383 |
+
Calcula la tabla ANOVA detallada con la descomposición del error residual.
|
384 |
+
"""
|
385 |
+
if self.model_simplified is None:
|
386 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
387 |
return None
|
388 |
|
389 |
+
# --- ANOVA detallada ---
|
390 |
+
# 1. Ajustar un modelo solo con los términos de primer orden y cuadráticos
|
391 |
+
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
392 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
393 |
+
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
394 |
|
395 |
+
# 2. ANOVA del modelo reducido (para obtener la suma de cuadrados de la regresión)
|
396 |
+
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
|
|
397 |
|
398 |
+
# 3. Suma de cuadrados total
|
399 |
+
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
|
400 |
|
401 |
+
# 4. Grados de libertad totales
|
402 |
+
df_total = len(self.data) - 1
|
403 |
|
404 |
+
# 5. Suma de cuadrados de la regresión
|
405 |
+
ss_regression = anova_reduced['sum_sq'][:-1].sum() # Sumar todo excepto 'Residual'
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
+
# 6. Grados de libertad de la regresión
|
408 |
+
df_regression = len(anova_reduced) - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
+
# 7. Suma de cuadrados del error residual
|
411 |
+
ss_residual = self.model_simplified.ssr
|
412 |
+
df_residual = self.model_simplified.df_resid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
|
414 |
+
# 8. Suma de cuadrados del error puro (se calcula a partir de las réplicas)
|
415 |
+
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
416 |
+
if not replicas.empty:
|
417 |
+
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum() * replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
|
418 |
+
df_pure_error = len(replicas) - replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
|
419 |
+
else:
|
420 |
+
ss_pure_error = np.nan
|
421 |
+
df_pure_error = np.nan
|
422 |
+
|
423 |
+
# 9. Suma de cuadrados de la falta de ajuste
|
424 |
+
ss_lack_of_fit = ss_residual - ss_pure_error if not np.isnan(ss_pure_error) else np.nan
|
425 |
+
df_lack_of_fit = df_residual - df_pure_error if not np.isnan(df_pure_error) else np.nan
|
426 |
+
|
427 |
+
# 10. Cuadrados medios
|
428 |
+
ms_regression = ss_regression / df_regression
|
429 |
+
ms_residual = ss_residual / df_residual
|
430 |
+
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit if not np.isnan(ss_lack_of_fit) else np.nan
|
431 |
+
ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(ss_pure_error) else np.nan
|
432 |
+
|
433 |
+
# 11. Estadístico F y valor p para la falta de ajuste
|
434 |
+
f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) else np.nan
|
435 |
+
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) else np.nan
|
436 |
+
|
437 |
+
# 12. Crear la tabla ANOVA detallada
|
438 |
+
detailed_anova_table = pd.DataFrame({
|
439 |
+
'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
|
440 |
+
'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total],
|
441 |
+
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
442 |
+
'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
|
443 |
+
'F': [np.nan, np.nan, f_lack_of_fit, np.nan, np.nan],
|
444 |
+
'Valor p': [np.nan, np.nan, p_lack_of_fit, np.nan, np.nan]
|
445 |
+
})
|
446 |
+
|
447 |
+
# Calcular la suma de cuadrados y grados de libertad para la curvatura
|
448 |
+
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
|
449 |
+
df_curvature = 3
|
450 |
+
|
451 |
+
# Añadir la fila de curvatura a la tabla ANOVA
|
452 |
+
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature, np.nan, np.nan]
|
453 |
+
|
454 |
+
# Reorganizar las filas para que la curvatura aparezca después de la regresión
|
455 |
+
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
456 |
+
|
457 |
+
# Resetear el índice para que sea consecutivo
|
458 |
+
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
459 |
+
|
460 |
+
return detailed_anova_table.round(3)
|
461 |
+
|
462 |
+
def get_all_tables(self):
|
463 |
+
"""
|
464 |
+
Obtiene todas las tablas generadas para ser exportadas a Excel.
|
465 |
+
"""
|
466 |
+
prediction_table = self.generate_prediction_table()
|
467 |
+
contribution_table = self.calculate_contribution_percentage()
|
468 |
+
detailed_anova_table = self.calculate_detailed_anova()
|
469 |
+
|
470 |
+
return {
|
471 |
+
'Predicciones': prediction_table,
|
472 |
+
'% Contribución': contribution_table,
|
473 |
+
'ANOVA Detallada': detailed_anova_table
|
474 |
+
}
|
475 |
|
476 |
+
def save_figures_to_zip(self):
|
477 |
+
"""
|
478 |
+
Guarda todas las figuras almacenadas en self.all_figures a un archivo ZIP en memoria.
|
479 |
+
"""
|
480 |
+
if not self.all_figures:
|
481 |
return None
|
482 |
|
483 |
+
zip_buffer = io.BytesIO()
|
484 |
+
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
|
485 |
+
for idx, fig in enumerate(self.all_figures, start=1):
|
486 |
+
img_bytes = fig.to_image(format="png")
|
487 |
+
zip_file.writestr(f'Grafico_{idx}.png', img_bytes)
|
488 |
+
zip_buffer.seek(0)
|
489 |
+
|
490 |
+
# Guardar en un archivo temporal
|
491 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as temp_file:
|
492 |
+
temp_file.write(zip_buffer.read())
|
493 |
+
temp_path = temp_file.name
|
494 |
+
|
495 |
+
return temp_path
|
496 |
+
|
497 |
+
def save_fig_to_bytes(self, fig):
|
498 |
+
"""
|
499 |
+
Convierte una figura Plotly a bytes en formato PNG.
|
500 |
+
"""
|
501 |
+
return fig.to_image(format="png")
|
502 |
+
|
503 |
+
def save_all_figures_png(self):
|
504 |
+
"""
|
505 |
+
Guarda todas las figuras en archivos PNG temporales y retorna las rutas.
|
506 |
+
"""
|
507 |
+
png_paths = []
|
508 |
+
for idx, fig in enumerate(self.all_figures, start=1):
|
509 |
+
img_bytes = fig.to_image(format="png")
|
510 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
511 |
+
temp_file.write(img_bytes)
|
512 |
+
temp_path = temp_file.name
|
513 |
+
png_paths.append(temp_path)
|
514 |
+
return png_paths
|
515 |
+
|
516 |
+
def save_tables_to_excel(self):
|
517 |
+
"""
|
518 |
+
Guarda todas las tablas en un archivo Excel con múltiples hojas y retorna la ruta del archivo.
|
519 |
+
"""
|
520 |
+
if 'rsm' not in globals():
|
|
|
|
|
|
|
|
|
|
|
521 |
return None
|
522 |
|
523 |
+
tables = self.get_all_tables()
|
524 |
+
excel_buffer = io.BytesIO()
|
525 |
+
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
|
526 |
+
for sheet_name, table in tables.items():
|
527 |
+
table.to_excel(writer, sheet_name=sheet_name, index=False)
|
528 |
+
excel_buffer.seek(0)
|
529 |
+
excel_bytes = excel_buffer.read()
|
530 |
|
531 |
+
# Guardar en un archivo temporal
|
532 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as temp_file:
|
533 |
+
temp_file.write(excel_bytes)
|
534 |
+
temp_path = temp_file.name
|
535 |
|
536 |
+
return temp_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
+
# --- Funciones para la interfaz de Gradio ---
|
|
|
|
|
|
|
539 |
|
540 |
+
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
541 |
+
"""
|
542 |
+
Carga los datos del diseño Box-Behnken desde cajas de texto y crea la instancia de RSM_BoxBehnken.
|
543 |
+
"""
|
544 |
+
try:
|
545 |
+
# Convertir los niveles a listas de números
|
546 |
+
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
|
547 |
+
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
|
548 |
+
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
|
549 |
+
|
550 |
+
# Crear DataFrame a partir de la cadena de datos
|
551 |
+
data_list = [row.split(',') for row in data_str.strip().split('\n')]
|
552 |
+
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
|
553 |
+
data = pd.DataFrame(data_list, columns=column_names)
|
554 |
+
data = data.apply(pd.to_numeric, errors='coerce') # Convertir a numérico
|
555 |
+
|
556 |
+
# Validar que el DataFrame tenga las columnas correctas
|
557 |
+
if not all(col in data.columns for col in column_names):
|
558 |
+
raise ValueError("El formato de los datos no es correcto.")
|
559 |
+
|
560 |
+
# Crear la instancia de RSM_BoxBehnken
|
561 |
+
global rsm
|
562 |
+
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
563 |
+
|
564 |
+
return data.round(3), x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True)
|
565 |
+
|
566 |
+
except Exception as e:
|
567 |
+
# Mostrar mensaje de error
|
568 |
+
error_message = f"Error al cargar los datos: {str(e)}"
|
569 |
+
print(error_message)
|
570 |
+
return None, "", "", "", "", [], [], [], gr.update(visible=False)
|
571 |
+
|
572 |
+
def fit_and_optimize_model():
|
573 |
+
if 'rsm' not in globals():
|
574 |
+
return [None]*10
|
575 |
+
|
576 |
+
# Ajustar modelos y optimizar
|
577 |
+
model_completo, pareto_completo = rsm.fit_model()
|
578 |
+
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
|
579 |
+
optimization_table = rsm.optimize()
|
580 |
+
equation = rsm.get_simplified_equation()
|
581 |
+
prediction_table = rsm.generate_prediction_table()
|
582 |
+
contribution_table = rsm.calculate_contribution_percentage()
|
583 |
+
anova_table = rsm.calculate_detailed_anova()
|
584 |
+
|
585 |
+
# Generar todas las figuras y almacenarlas
|
586 |
+
rsm.generate_all_plots()
|
587 |
+
|
588 |
+
# Formatear la ecuación para que se vea mejor en Markdown
|
589 |
+
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
|
590 |
+
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
|
591 |
+
|
592 |
+
# Guardar las tablas en Excel temporal
|
593 |
+
excel_path = rsm.save_tables_to_excel()
|
594 |
+
|
595 |
+
# Guardar todas las figuras en un ZIP temporal
|
596 |
+
zip_path = rsm.save_figures_to_zip()
|
597 |
+
|
598 |
+
return (
|
599 |
+
model_completo.summary().as_html(),
|
600 |
+
pareto_completo,
|
601 |
+
model_simplificado.summary().as_html(),
|
602 |
+
pareto_simplificado,
|
603 |
+
equation_formatted,
|
604 |
+
optimization_table,
|
605 |
+
prediction_table,
|
606 |
+
contribution_table,
|
607 |
+
anova_table,
|
608 |
+
zip_path, # Ruta del ZIP de gráficos
|
609 |
+
excel_path # Ruta del Excel de tablas
|
610 |
+
)
|
611 |
|
612 |
+
def show_plot(current_index, all_figures):
|
613 |
+
if not all_figures:
|
614 |
+
return None, "No hay gráficos disponibles.", current_index
|
615 |
+
selected_fig = all_figures[current_index]
|
616 |
+
plot_info_text = f"Gráfico {current_index + 1} de {len(all_figures)}"
|
617 |
+
return selected_fig, plot_info_text, current_index
|
618 |
|
619 |
+
def navigate_plot(direction, current_index, all_figures):
|
620 |
+
"""
|
621 |
+
Navega entre los gráficos.
|
622 |
+
"""
|
623 |
+
if not all_figures:
|
624 |
+
return None, "No hay gráficos disponibles.", current_index
|
625 |
+
|
626 |
+
if direction == 'left':
|
627 |
+
new_index = (current_index - 1) % len(all_figures)
|
628 |
+
elif direction == 'right':
|
629 |
+
new_index = (current_index + 1) % len(all_figures)
|
630 |
+
else:
|
631 |
+
new_index = current_index
|
632 |
+
|
633 |
+
selected_fig = all_figures[new_index]
|
634 |
+
plot_info_text = f"Gráfico {new_index + 1} de {len(all_figures)}"
|
635 |
+
|
636 |
+
return selected_fig, plot_info_text, new_index
|
637 |
|
638 |
+
def download_current_plot(all_figures, current_index):
|
639 |
+
"""
|
640 |
+
Descarga la figura actual como PNG.
|
641 |
+
"""
|
642 |
+
if not all_figures:
|
643 |
return None
|
644 |
+
fig = all_figures[current_index]
|
645 |
+
img_bytes = rsm.save_fig_to_bytes(fig)
|
646 |
+
filename = f"Grafico_RSM_{current_index + 1}.png"
|
647 |
+
|
648 |
+
# Crear un archivo temporal
|
649 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
650 |
+
temp_file.write(img_bytes)
|
651 |
+
temp_path = temp_file.name
|
652 |
+
|
653 |
+
return temp_path # Retornar solo la ruta
|
654 |
|
655 |
+
def download_all_plots_zip(all_figures):
|
656 |
+
"""
|
657 |
+
Descarga todas las figuras en un archivo ZIP.
|
658 |
+
"""
|
659 |
+
if not all_figures:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
return None
|
661 |
+
zip_path = rsm.save_figures_to_zip()
|
662 |
+
filename = f"Graficos_RSM_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
|
663 |
+
return zip_path # Retornar solo la ruta
|
664 |
|
665 |
+
def download_all_tables_excel():
|
666 |
+
"""
|
667 |
+
Descarga todas las tablas en un archivo Excel con múltiples hojas.
|
668 |
+
"""
|
669 |
+
if 'rsm' not in globals():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
670 |
return None
|
671 |
+
excel_path = rsm.save_tables_to_excel()
|
672 |
+
filename = f"Tablas_RSM_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
|
673 |
+
return excel_path # Retornar solo la ruta
|
674 |
|
675 |
+
# --- Crear la interfaz de Gradio ---
|
676 |
+
|
677 |
+
with gr.Blocks() as demo:
|
678 |
+
gr.Markdown("# Optimización de la producción de AIA usando RSM Box-Behnken")
|
679 |
+
|
680 |
+
with gr.Row():
|
681 |
+
with gr.Column():
|
682 |
+
gr.Markdown("## Configuración del Diseño")
|
683 |
+
x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa")
|
684 |
+
x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Extracto de Levadura)", value="Extracto_de_Levadura")
|
685 |
+
x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Triptófano)", value="Triptofano")
|
686 |
+
y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. AIA (ppm))", value="AIA_ppm")
|
687 |
+
x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5")
|
688 |
+
x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3")
|
689 |
+
x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9")
|
690 |
+
data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=10, value="""1,-1,-1,0,166.594
|
691 |
+
2,1,-1,0,177.557
|
692 |
+
3,-1,1,0,127.261
|
693 |
+
4,1,1,0,147.573
|
694 |
+
5,-1,0,-1,188.883
|
695 |
+
6,1,0,-1,224.527
|
696 |
+
7,-1,0,1,190.238
|
697 |
+
8,1,0,1,226.483
|
698 |
+
9,0,-1,-1,195.550
|
699 |
+
10,0,1,-1,149.493
|
700 |
+
11,0,-1,1,187.683
|
701 |
+
12,0,1,1,148.621
|
702 |
+
13,0,0,0,278.951
|
703 |
+
14,0,0,0,297.238
|
704 |
+
15,0,0,0,280.896""")
|
705 |
+
load_button = gr.Button("Cargar Datos")
|
706 |
+
|
707 |
+
with gr.Column():
|
708 |
+
gr.Markdown("## Datos Cargados")
|
709 |
+
data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
|
710 |
+
|
711 |
+
# Sección de análisis visible solo después de cargar los datos
|
712 |
+
with gr.Row(visible=False) as analysis_row:
|
713 |
+
with gr.Column():
|
714 |
+
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
715 |
+
gr.Markdown("**Modelo Completo**")
|
716 |
+
model_completo_output = gr.HTML()
|
717 |
+
pareto_completo_output = gr.Plot()
|
718 |
+
gr.Markdown("**Modelo Simplificado**")
|
719 |
+
model_simplificado_output = gr.HTML()
|
720 |
+
pareto_simplificado_output = gr.Plot()
|
721 |
+
gr.Markdown("**Ecuación del Modelo Simplificado**")
|
722 |
+
equation_output = gr.HTML()
|
723 |
+
optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
|
724 |
+
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
|
725 |
+
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
|
726 |
+
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
|
727 |
+
gr.Markdown("## Descargar Todas las Tablas")
|
728 |
+
download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
|
729 |
+
|
730 |
+
with gr.Column():
|
731 |
+
gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
|
732 |
+
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
|
733 |
+
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=-1, maximum=1, step=0.01, value=0.0)
|
734 |
+
plot_button = gr.Button("Generar Gráficos")
|
735 |
+
with gr.Row():
|
736 |
+
left_button = gr.Button("<")
|
737 |
+
right_button = gr.Button(">")
|
738 |
+
rsm_plot_output = gr.Plot()
|
739 |
+
plot_info = gr.Textbox(label="Información del Gráfico", value="Gráfico 1 de 9", interactive=False)
|
740 |
+
with gr.Row():
|
741 |
+
download_plot_button = gr.DownloadButton("Descargar Gráfico Actual (PNG)")
|
742 |
+
download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
|
743 |
+
current_index_state = gr.State(0) # Estado para el índice actual
|
744 |
+
all_figures_state = gr.State([]) # Estado para todas las figuras
|
745 |
+
|
746 |
+
# Cargar datos
|
747 |
+
load_button.click(
|
748 |
+
load_data,
|
749 |
+
inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
|
750 |
+
outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
|
751 |
+
)
|
752 |
+
|
753 |
+
# Ajustar modelo y optimizar
|
754 |
+
fit_button.click(
|
755 |
+
fit_and_optimize_model,
|
756 |
+
inputs=[],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
757 |
outputs=[
|
758 |
+
model_completo_output,
|
759 |
+
pareto_completo_output,
|
760 |
+
model_simplificado_output,
|
761 |
+
pareto_simplificado_output,
|
762 |
+
equation_output,
|
763 |
+
optimization_table_output,
|
764 |
+
prediction_table_output,
|
765 |
+
contribution_table_output,
|
766 |
+
anova_table_output,
|
767 |
+
download_all_plots_button,
|
768 |
+
download_excel_button
|
769 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
770 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
771 |
|
772 |
+
# Generar y mostrar los gráficos
|
773 |
+
plot_button.click(
|
774 |
+
lambda fixed_var, fixed_lvl: (rsm.plot_rsm_individual(fixed_var, fixed_lvl), "Gráfico 1 de " + str(len(rsm.all_figures)), 0),
|
775 |
+
inputs=[fixed_variable_input, fixed_level_input],
|
776 |
+
outputs=[rsm_plot_output, plot_info, current_index_state]
|
777 |
+
)
|
778 |
+
|
779 |
+
# Navegación de gráficos
|
780 |
+
left_button.click(
|
781 |
+
navigate_plot,
|
782 |
+
inputs=[gr.Button.get_value(left_button), current_index_state, all_figures_state],
|
783 |
+
outputs=[rsm_plot_output, plot_info, current_index_state]
|
784 |
+
)
|
785 |
+
right_button.click(
|
786 |
+
navigate_plot,
|
787 |
+
inputs=[gr.Button.get_value(right_button), current_index_state, all_figures_state],
|
788 |
+
outputs=[rsm_plot_output, plot_info, current_index_state]
|
789 |
+
)
|
790 |
+
|
791 |
+
# Descargar gráfico actual
|
792 |
+
download_plot_button.click(
|
793 |
+
download_current_plot,
|
794 |
+
inputs=[all_figures_state, current_index_state],
|
795 |
+
outputs=download_plot_button
|
796 |
+
)
|
797 |
+
|
798 |
+
# Descargar todos los gráficos en ZIP
|
799 |
+
download_all_plots_button.click(
|
800 |
+
download_all_plots_zip,
|
801 |
+
inputs=[all_figures_state],
|
802 |
+
outputs=download_all_plots_button
|
803 |
+
)
|
804 |
+
|
805 |
+
# Descargar todas las tablas en Excel
|
806 |
+
download_excel_button.click(
|
807 |
+
download_all_tables_excel,
|
808 |
+
inputs=[],
|
809 |
+
outputs=download_excel_button
|
810 |
+
)
|
811 |
+
|
812 |
+
# Ejemplo de uso
|
813 |
+
gr.Markdown("## Ejemplo de uso")
|
814 |
+
gr.Markdown("""
|
815 |
+
1. Introduce los nombres de las variables y sus niveles en las cajas de texto correspondientes.
|
816 |
+
2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.
|
817 |
+
3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.
|
818 |
+
4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.
|
819 |
+
5. Selecciona una variable fija y su nivel en los controles deslizantes.
|
820 |
+
6. Haz clic en 'Generar Gráficos' para generar los gráficos de superficie de respuesta.
|
821 |
+
7. Navega entre los gráficos usando los botones '<' y '>'.
|
822 |
+
8. Descarga el gráfico actual en PNG o descarga todos los gráficos en un ZIP.
|
823 |
+
9. Descarga todas las tablas en un archivo Excel con el botón correspondiente.
|
824 |
+
""")
|
825 |
+
|
826 |
+
demo.launch()
|