Update interface.py
Browse files- interface.py +156 -0
interface.py
CHANGED
|
@@ -21,6 +21,162 @@ model_path = MODEL_PATH
|
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 22 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Decorador GPU aplicado para manejar la ejecuci贸n en GPU si est谩 disponible
|
| 25 |
@gpu_decorator(duration=300)
|
| 26 |
def generate_analysis(prompt, max_length=1024, device=None):
|
|
|
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 22 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 23 |
|
| 24 |
+
###############################
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# bioprocess_model.py
|
| 28 |
+
|
| 29 |
+
import numpy as np
|
| 30 |
+
import pandas as pd
|
| 31 |
+
import matplotlib.pyplot as plt
|
| 32 |
+
from scipy.integrate import odeint
|
| 33 |
+
from scipy.optimize import curve_fit
|
| 34 |
+
from sklearn.metrics import mean_squared_error
|
| 35 |
+
import seaborn as sns
|
| 36 |
+
|
| 37 |
+
class BioprocessModel:
|
| 38 |
+
def __init__(self):
|
| 39 |
+
self.params = {}
|
| 40 |
+
self.r2 = {}
|
| 41 |
+
self.rmse = {}
|
| 42 |
+
self.datax = []
|
| 43 |
+
self.datas = []
|
| 44 |
+
self.datap = []
|
| 45 |
+
self.dataxp = []
|
| 46 |
+
self.datasp = []
|
| 47 |
+
self.datapp = []
|
| 48 |
+
self.datax_std = []
|
| 49 |
+
self.datas_std = []
|
| 50 |
+
self.datap_std = []
|
| 51 |
+
|
| 52 |
+
@staticmethod
|
| 53 |
+
def logistic(time, xo, xm, um):
|
| 54 |
+
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))
|
| 55 |
+
|
| 56 |
+
@staticmethod
|
| 57 |
+
def substrate(time, so, p, q, xo, xm, um):
|
| 58 |
+
return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
|
| 59 |
+
(q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
|
| 60 |
+
|
| 61 |
+
@staticmethod
|
| 62 |
+
def product(time, po, alpha, beta, xo, xm, um):
|
| 63 |
+
return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \
|
| 64 |
+
(beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
|
| 65 |
+
|
| 66 |
+
@staticmethod
|
| 67 |
+
def logistic_diff(X, t, params):
|
| 68 |
+
xo, xm, um = params
|
| 69 |
+
dXdt = um * X * (1 - X / xm)
|
| 70 |
+
return dXdt
|
| 71 |
+
|
| 72 |
+
def substrate_diff(self, S, t, params, biomass_params, X_func):
|
| 73 |
+
so, p, q = params
|
| 74 |
+
xo, xm, um = biomass_params
|
| 75 |
+
X_t = X_func(t)
|
| 76 |
+
dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t
|
| 77 |
+
return dSdt
|
| 78 |
+
|
| 79 |
+
def product_diff(self, P, t, params, biomass_params, X_func):
|
| 80 |
+
po, alpha, beta = params
|
| 81 |
+
xo, xm, um = biomass_params
|
| 82 |
+
X_t = X_func(t)
|
| 83 |
+
dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
|
| 84 |
+
return dPdt
|
| 85 |
+
|
| 86 |
+
def process_data(self, df):
|
| 87 |
+
biomass_cols = [col for col in df.columns if 'Biomasa' in col]
|
| 88 |
+
substrate_cols = [col for col in df.columns if 'Sustrato' in col]
|
| 89 |
+
product_cols = [col for col in df.columns if 'Producto' in col]
|
| 90 |
+
|
| 91 |
+
time_col = [col for col in df.columns if 'Tiempo' in col][0]
|
| 92 |
+
time = df[time_col].values
|
| 93 |
+
|
| 94 |
+
data_biomass = np.array([df[col].values for col in biomass_cols])
|
| 95 |
+
self.datax.append(data_biomass)
|
| 96 |
+
self.dataxp.append(np.mean(data_biomass, axis=0))
|
| 97 |
+
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
|
| 98 |
+
|
| 99 |
+
data_substrate = np.array([df[col].values for col in substrate_cols])
|
| 100 |
+
self.datas.append(data_substrate)
|
| 101 |
+
self.datasp.append(np.mean(data_substrate, axis=0))
|
| 102 |
+
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
|
| 103 |
+
|
| 104 |
+
data_product = np.array([df[col].values for col in product_cols])
|
| 105 |
+
self.datap.append(data_product)
|
| 106 |
+
self.datapp.append(np.mean(data_product, axis=0))
|
| 107 |
+
self.datap_std.append(np.std(data_product, axis=0, ddof=1))
|
| 108 |
+
|
| 109 |
+
self.time = time
|
| 110 |
+
|
| 111 |
+
def fit_model(self, model_type='logistic'):
|
| 112 |
+
if model_type == 'logistic':
|
| 113 |
+
self.fit_biomass = self.fit_biomass_logistic
|
| 114 |
+
self.fit_substrate = self.fit_substrate_logistic
|
| 115 |
+
self.fit_product = self.fit_product_logistic
|
| 116 |
+
|
| 117 |
+
def fit_biomass_logistic(self, time, biomass, bounds):
|
| 118 |
+
popt, _ = curve_fit(self.logistic, time, biomass, bounds=bounds, maxfev=10000)
|
| 119 |
+
self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]}
|
| 120 |
+
y_pred = self.logistic(time, *popt)
|
| 121 |
+
self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2))
|
| 122 |
+
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
|
| 123 |
+
return y_pred
|
| 124 |
+
|
| 125 |
+
def fit_substrate_logistic(self, time, substrate, biomass_params, bounds):
|
| 126 |
+
popt, _ = curve_fit(lambda t, so, p, q: self.substrate(t, so, p, q, *biomass_params.values()),
|
| 127 |
+
time, substrate, bounds=bounds)
|
| 128 |
+
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
|
| 129 |
+
y_pred = self.substrate(time, *popt, *biomass_params.values())
|
| 130 |
+
self.r2['substrate'] = 1 - (np.sum((substrate - y_pred) ** 2) / np.sum((substrate - np.mean(substrate)) ** 2))
|
| 131 |
+
self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred))
|
| 132 |
+
return y_pred
|
| 133 |
+
|
| 134 |
+
def fit_product_logistic(self, time, product, biomass_params, bounds):
|
| 135 |
+
popt, _ = curve_fit(lambda t, po, alpha, beta: self.product(t, po, alpha, beta, *biomass_params.values()),
|
| 136 |
+
time, product, bounds=bounds)
|
| 137 |
+
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
|
| 138 |
+
y_pred = self.product(time, *popt, *biomass_params.values())
|
| 139 |
+
self.r2['product'] = 1 - (np.sum((product - y_pred) ** 2) / np.sum((product - np.mean(product)) ** 2))
|
| 140 |
+
self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred))
|
| 141 |
+
return y_pred
|
| 142 |
+
|
| 143 |
+
def plot_combined_results(self, time, biomass, substrate, product,
|
| 144 |
+
y_pred_biomass, y_pred_substrate, y_pred_product,
|
| 145 |
+
biomass_std=None, substrate_std=None, product_std=None,
|
| 146 |
+
experiment_name='', legend_position='best', params_position='upper right',
|
| 147 |
+
show_legend=True, show_params=True,
|
| 148 |
+
style='whitegrid', line_color='#0000FF', point_color='#000000',
|
| 149 |
+
line_style='-', marker_style='o'):
|
| 150 |
+
sns.set_style(style)
|
| 151 |
+
|
| 152 |
+
fig, ax1 = plt.subplots(figsize=(10, 7))
|
| 153 |
+
ax1.set_xlabel('Tiempo')
|
| 154 |
+
ax1.set_ylabel('Biomasa', color=line_color)
|
| 155 |
+
|
| 156 |
+
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=point_color, label='Biomasa (Datos)')
|
| 157 |
+
ax1.plot(time, y_pred_biomass, linestyle=line_style, color=line_color, label='Biomasa (Modelo)')
|
| 158 |
+
ax1.tick_params(axis='y', labelcolor=line_color)
|
| 159 |
+
|
| 160 |
+
ax2 = ax1.twinx()
|
| 161 |
+
ax2.set_ylabel('Sustrato', color='green')
|
| 162 |
+
ax2.plot(time, substrate, marker=marker_style, linestyle='', color='green', label='Sustrato (Datos)')
|
| 163 |
+
ax2.plot(time, y_pred_substrate, linestyle=line_style, color='green', label='Sustrato (Modelo)')
|
| 164 |
+
ax2.tick_params(axis='y', labelcolor='green')
|
| 165 |
+
|
| 166 |
+
ax3 = ax1.twinx()
|
| 167 |
+
ax3.spines["right"].set_position(("axes", 1.1))
|
| 168 |
+
ax3.set_ylabel('Producto', color='red')
|
| 169 |
+
ax3.plot(time, product, marker=marker_style, linestyle='', color='red', label='Producto (Datos)')
|
| 170 |
+
ax3.plot(time, y_pred_product, linestyle=line_style, color='red', label='Producto (Modelo)')
|
| 171 |
+
ax3.tick_params(axis='y', labelcolor='red')
|
| 172 |
+
|
| 173 |
+
fig.tight_layout()
|
| 174 |
+
return fig
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
###############################
|
| 179 |
+
|
| 180 |
# Decorador GPU aplicado para manejar la ejecuci贸n en GPU si est谩 disponible
|
| 181 |
@gpu_decorator(duration=300)
|
| 182 |
def generate_analysis(prompt, max_length=1024, device=None):
|