# interface.py import numpy as np import pandas as pd import matplotlib matplotlib.use('Agg') # Backend no interactivo import matplotlib.pyplot as plt from PIL import Image import io import json import traceback # Para traceback detallado # Importar BioprocessModel de TU models.py (el que usa sympy) from models import BioprocessModel # from decorators import gpu_decorator # No es necesario con Modal # Variables globales que serán "inyectadas" USE_MODAL_FOR_LLM_ANALYSIS = False generate_analysis_from_modal = None def create_error_image(message="Error", width=600, height=400): """Crea una imagen PIL simple para mostrar mensajes de error.""" img = Image.new('RGB', (width, height), color = (255, 200, 200)) # Fondo rojo claro # No podemos dibujar texto fácilmente sin Pillow-SIMD o dependencias de dibujo complejas. # Una imagen simple es suficiente para indicar un error. # from PIL import ImageDraw # d = ImageDraw.Draw(img) # d.text((10,10), message, fill=(0,0,0)) # Esto requeriría una fuente print(f"Generando imagen de error: {message}") return img def parse_bounds_str(bounds_str_input, num_params): bounds_str = str(bounds_str_input).strip() if not bounds_str: print(f"Cadena de límites vacía para {num_params} params. Usando (-inf, inf).") return [-np.inf] * num_params, [np.inf] * num_params try: bounds_str = bounds_str.lower().replace('inf', 'np.inf').replace('none', 'None') if not (bounds_str.startswith('[') and bounds_str.endswith(']')): bounds_str = f"[{bounds_str}]" parsed_bounds_list = eval(bounds_str, {'np': np, 'inf': np.inf, 'None': None}) if not isinstance(parsed_bounds_list, list): raise ValueError("Cadena de límites no evaluó a una lista.") if len(parsed_bounds_list) != num_params: raise ValueError(f"Num límites ({len(parsed_bounds_list)}) != num params ({num_params}).") lower_bounds, upper_bounds = [], [] for item in parsed_bounds_list: if not (isinstance(item, (tuple, list)) and len(item) == 2): raise ValueError(f"Límite debe ser (low, high). Se encontró: {item}") low = -np.inf if (item[0] is None or (isinstance(item[0], float) and np.isnan(item[0]))) else float(item[0]) high = np.inf if (item[1] is None or (isinstance(item[1], float) and np.isnan(item[1]))) else float(item[1]) lower_bounds.append(low); upper_bounds.append(high) return lower_bounds, upper_bounds except Exception as e: print(f"Error al parsear límites '{bounds_str_input}': {e}. Usando por defecto (-inf, inf).") return [-np.inf] * num_params, [np.inf] * num_params def call_llm_analysis_service(prompt: str) -> str: """Llama al servicio LLM (ya sea localmente o a través de Modal).""" # ... (sin cambios respecto a la versión anterior completa) if USE_MODAL_FOR_LLM_ANALYSIS and generate_analysis_from_modal: print("interface.py: Usando la función de análisis LLM de Modal...") try: return generate_analysis_from_modal(prompt) except Exception as e_modal_call: print(f"Error llamando a la función Modal LLM: {e_modal_call}") traceback.print_exc() return f"Error al contactar el servicio de análisis IA (Modal): {e_modal_call}" else: print("interface.py: Usando la función de análisis LLM local (fallback)...") # Implementación de fallback local (como en la respuesta anterior) try: from config import MODEL_PATH, MAX_LENGTH, DEVICE from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Asegurar importación de torch para fallback print(f"Fallback: Cargando modelo {MODEL_PATH} localmente en {DEVICE}...") tokenizer_local = AutoTokenizer.from_pretrained(MODEL_PATH) model_local = AutoModelForCausalLM.from_pretrained(MODEL_PATH).to(DEVICE) model_context_window = getattr(model_local.config, 'max_position_embeddings', getattr(model_local.config, 'sliding_window', 4096)) max_prompt_len = model_context_window - MAX_LENGTH - 50 if max_prompt_len <= 0 : max_prompt_len = model_context_window // 2 inputs = tokenizer_local(prompt, return_tensors="pt", truncation=True, max_length=max_prompt_len).to(DEVICE) with torch.no_grad(): outputs = model_local.generate( **inputs, max_new_tokens=MAX_LENGTH, eos_token_id=tokenizer_local.eos_token_id, pad_token_id=tokenizer_local.pad_token_id if tokenizer_local.pad_token_id else tokenizer_local.eos_token_id, do_sample=True, temperature=0.6, top_p=0.9 ) input_len = inputs.input_ids.shape[1] analysis = tokenizer_local.decode(outputs[0][input_len:], skip_special_tokens=True) return analysis.strip() except Exception as e_local_llm: print(f"Error en el fallback LLM local: {e_local_llm}") traceback.print_exc() return f"Análisis (fallback local): Error al cargar/ejecutar modelo LLM local: {e_local_llm}." def process_and_plot( file_obj, biomass_eq1_ui, biomass_eq2_ui, biomass_eq3_ui, biomass_param1_ui, biomass_param2_ui, biomass_param3_ui, biomass_bound1_ui, biomass_bound2_ui, biomass_bound3_ui, substrate_eq1_ui, substrate_eq2_ui, substrate_eq3_ui, substrate_param1_ui, substrate_param2_ui, substrate_param3_ui, substrate_bound1_ui, substrate_bound2_ui, substrate_bound3_ui, product_eq1_ui, product_eq2_ui, product_eq3_ui, product_param1_ui, product_param2_ui, product_param3_ui, product_bound1_ui, product_bound2_ui, product_bound3_ui, legend_position_ui, show_legend_ui, show_params_ui, biomass_eq_count_ui, substrate_eq_count_ui, product_eq_count_ui ): # Imagen y texto de error por defecto error_img = create_error_image("Error en procesamiento") error_analysis_text = "No se pudo generar el análisis debido a un error." try: if file_obj is None: return error_img, "Error: Por favor, sube un archivo Excel." try: df = pd.read_excel(file_obj.name) except Exception as e: return error_img, f"Error al leer el archivo Excel: {e}\n{traceback.format_exc()}" expected_cols = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto'] for col in expected_cols: if col not in df.columns: return error_img, f"Error: La columna '{col}' no se encuentra en el archivo Excel." time_data = df['Tiempo'].values biomass_data_exp = df['Biomasa'].values substrate_data_exp = df['Sustrato'].values product_data_exp = df['Producto'].values # Asegurar que los contadores sean enteros válidos try: active_biomass_eqs = int(float(biomass_eq_count_ui)) active_substrate_eqs = int(float(substrate_eq_count_ui)) active_product_eqs = int(float(product_eq_count_ui)) except (TypeError, ValueError): return error_img, "Error: Número de ecuaciones inválido." all_eq_inputs = { 'biomass': ( [biomass_eq1_ui, biomass_eq2_ui, biomass_eq3_ui][:active_biomass_eqs], [biomass_param1_ui, biomass_param2_ui, biomass_param3_ui][:active_biomass_eqs], [biomass_bound1_ui, biomass_bound2_ui, biomass_bound3_ui][:active_biomass_eqs], biomass_data_exp ), 'substrate': ( [substrate_eq1_ui, substrate_eq2_ui, substrate_eq3_ui][:active_substrate_eqs], [substrate_param1_ui, substrate_param2_ui, substrate_param3_ui][:active_substrate_eqs], [substrate_bound1_ui, substrate_bound2_ui, substrate_bound3_ui][:active_substrate_eqs], substrate_data_exp ), 'product': ( [product_eq1_ui, product_eq2_ui, product_eq3_ui][:active_product_eqs], [product_param1_ui, product_param2_ui, product_param3_ui][:active_product_eqs], [product_bound1_ui, product_bound2_ui, product_bound3_ui][:active_product_eqs], product_data_exp ) } model_handler = BioprocessModel() fitted_results_for_plot = {'biomass': [], 'substrate': [], 'product': []} results_for_llm_prompt = {'biomass': [], 'substrate': [], 'product': []} biomass_params_for_s_p = None for model_type, (eq_list, param_str_list, bound_str_list, exp_data) in all_eq_inputs.items(): if not (isinstance(exp_data, np.ndarray) and exp_data.size > 0 and np.any(np.isfinite(exp_data))): print(f"Datos experimentales para {model_type} no válidos o vacíos, saltando ajuste.") continue for i in range(len(eq_list)): eq_str, param_s, bound_s = eq_list[i], param_str_list[i], bound_str_list[i] if not eq_str or not param_s: continue try: model_handler.set_model(model_type, eq_str, param_s) num_p = len(model_handler.models[model_type]['params']) l_b, u_b = parse_bounds_str(bound_s, num_p) current_biomass_p = biomass_params_for_s_p if model_type in ['substrate', 'product'] else None y_pred, popt = model_handler.fit_model(model_type, time_data, exp_data, bounds=(l_b, u_b), biomass_params_fitted=current_biomass_p) current_params = model_handler.params.get(model_type, {}) # Obtener params del handler r2_val = model_handler.r2.get(model_type, float('nan')) rmse_val = model_handler.rmse.get(model_type, float('nan')) fitted_results_for_plot[model_type].append({'equation': eq_str, 'y_pred': y_pred, 'params': current_params, 'R2': r2_val}) results_for_llm_prompt[model_type].append({'equation': eq_str, 'params_fitted': current_params, 'R2': r2_val, 'RMSE': rmse_val}) if model_type == 'biomass' and biomass_params_for_s_p is None and current_params: biomass_params_for_s_p = current_params except Exception as e_fit: error_msg = f"Error ajustando {model_type} #{i+1} ('{eq_str}'): {e_fit}\n{traceback.format_exc()}" print(error_msg); return error_img, error_msg # Generar gráfico fig, axs = plt.subplots(3, 1, figsize=(10, 18), sharex=True) plot_config_map = { axs[0]: (biomass_data_exp, 'Biomasa', fitted_results_for_plot['biomass']), axs[1]: (substrate_data_exp, 'Sustrato', fitted_results_for_plot['sustrato']), axs[2]: (product_data_exp, 'Producto', fitted_results_for_plot['producto']) } for ax, data_actual, ylabel, plot_results in plot_config_map.items(): if isinstance(data_actual, np.ndarray) and data_actual.size > 0 and np.any(np.isfinite(data_actual)): ax.plot(time_data, data_actual, 'o', label=f'Datos {ylabel}', markersize=5, alpha=0.7) else: ax.text(0.5, 0.5, f"No hay datos para {ylabel}", transform=ax.transAxes, ha='center', va='center') for idx, res_detail in enumerate(plot_results): label = f'Modelo {idx+1} (R²:{res_detail.get("R2", float("nan")):.3f})' ax.plot(time_data, res_detail['y_pred'], '-', label=label, linewidth=2) ax.set_xlabel('Tiempo'); ax.set_ylabel(ylabel); ax.grid(True, linestyle=':', alpha=0.7) if show_legend_ui: ax.legend(loc=legend_position_ui, fontsize='small') if show_params_ui and plot_results: param_display_texts = [f"Modelo {idx+1}:\n" + "\n".join([f" {k}: {v:.4g}" for k,v in res_detail.get('params',{}).items()]) for idx, res_detail in enumerate(plot_results)] ax.text(0.02, 0.98 if not ('upper' in legend_position_ui) else 0.02, "\n---\n".join(param_display_texts), transform=ax.transAxes, fontsize=7, verticalalignment='top' if not ('upper' in legend_position_ui) else 'bottom', bbox=dict(boxstyle='round,pad=0.3', fc='lightyellow', alpha=0.8)) plt.tight_layout(rect=[0, 0, 1, 0.96]); fig.suptitle("Resultados del Ajuste de Modelos Cinéticos", fontsize=16) buf = io.BytesIO(); plt.savefig(buf, format='png', dpi=150); buf.seek(0) image_pil = Image.open(buf); plt.close(fig) # Construir prompt y llamar a LLM prompt_intro = "Eres un experto en modelado cinético de bioprocesos...\n\n" # (como antes) prompt_details = json.dumps(results_for_llm_prompt, indent=2, ensure_ascii=False) prompt_instructions = "\n\nPor favor, proporciona un análisis detallado...\n" # (como antes) full_prompt = prompt_intro + prompt_details + prompt_instructions analysis_text_llm = call_llm_analysis_service(full_prompt) return image_pil, analysis_text_llm except Exception as general_e: error_trace = traceback.format_exc() error_message_full = f"Error inesperado en process_and_plot: {general_e}\n{error_trace}" print(error_message_full) return create_error_image(f"Error: {general_e}"), error_message_full