File size: 13,697 Bytes
d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 00b61aa d3d8124 a622789 d3d8124 00b61aa d3d8124 00b61aa a622789 d3d8124 a622789 00b61aa d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 a622789 d3d8124 00b61aa d3d8124 00b61aa d3d8124 a622789 d3d8124 00b61aa d3d8124 00b61aa d3d8124 00b61aa d3d8124 a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 d3d8124 00b61aa a622789 d3d8124 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 d3d8124 a622789 00b61aa a622789 00b61aa a622789 00b61aa a622789 d3d8124 00b61aa a622789 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# interface.py
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('Agg') # Backend no interactivo
import matplotlib.pyplot as plt
from PIL import Image
import io
import json
import traceback # Para traceback detallado
# Importar BioprocessModel de TU models.py (el que usa sympy)
from models import BioprocessModel
# from decorators import gpu_decorator # No es necesario con Modal
# Variables globales que serán "inyectadas"
USE_MODAL_FOR_LLM_ANALYSIS = False
generate_analysis_from_modal = None
def create_error_image(message="Error", width=600, height=400):
"""Crea una imagen PIL simple para mostrar mensajes de error."""
img = Image.new('RGB', (width, height), color = (255, 200, 200)) # Fondo rojo claro
# No podemos dibujar texto fácilmente sin Pillow-SIMD o dependencias de dibujo complejas.
# Una imagen simple es suficiente para indicar un error.
# from PIL import ImageDraw
# d = ImageDraw.Draw(img)
# d.text((10,10), message, fill=(0,0,0)) # Esto requeriría una fuente
print(f"Generando imagen de error: {message}")
return img
def parse_bounds_str(bounds_str_input, num_params):
bounds_str = str(bounds_str_input).strip()
if not bounds_str:
print(f"Cadena de límites vacía para {num_params} params. Usando (-inf, inf).")
return [-np.inf] * num_params, [np.inf] * num_params
try:
bounds_str = bounds_str.lower().replace('inf', 'np.inf').replace('none', 'None')
if not (bounds_str.startswith('[') and bounds_str.endswith(']')):
bounds_str = f"[{bounds_str}]"
parsed_bounds_list = eval(bounds_str, {'np': np, 'inf': np.inf, 'None': None})
if not isinstance(parsed_bounds_list, list):
raise ValueError("Cadena de límites no evaluó a una lista.")
if len(parsed_bounds_list) != num_params:
raise ValueError(f"Num límites ({len(parsed_bounds_list)}) != num params ({num_params}).")
lower_bounds, upper_bounds = [], []
for item in parsed_bounds_list:
if not (isinstance(item, (tuple, list)) and len(item) == 2):
raise ValueError(f"Límite debe ser (low, high). Se encontró: {item}")
low = -np.inf if (item[0] is None or (isinstance(item[0], float) and np.isnan(item[0]))) else float(item[0])
high = np.inf if (item[1] is None or (isinstance(item[1], float) and np.isnan(item[1]))) else float(item[1])
lower_bounds.append(low); upper_bounds.append(high)
return lower_bounds, upper_bounds
except Exception as e:
print(f"Error al parsear límites '{bounds_str_input}': {e}. Usando por defecto (-inf, inf).")
return [-np.inf] * num_params, [np.inf] * num_params
def call_llm_analysis_service(prompt: str) -> str:
"""Llama al servicio LLM (ya sea localmente o a través de Modal)."""
# ... (sin cambios respecto a la versión anterior completa)
if USE_MODAL_FOR_LLM_ANALYSIS and generate_analysis_from_modal:
print("interface.py: Usando la función de análisis LLM de Modal...")
try:
return generate_analysis_from_modal(prompt)
except Exception as e_modal_call:
print(f"Error llamando a la función Modal LLM: {e_modal_call}")
traceback.print_exc()
return f"Error al contactar el servicio de análisis IA (Modal): {e_modal_call}"
else:
print("interface.py: Usando la función de análisis LLM local (fallback)...")
# Implementación de fallback local (como en la respuesta anterior)
try:
from config import MODEL_PATH, MAX_LENGTH, DEVICE
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch # Asegurar importación de torch para fallback
print(f"Fallback: Cargando modelo {MODEL_PATH} localmente en {DEVICE}...")
tokenizer_local = AutoTokenizer.from_pretrained(MODEL_PATH)
model_local = AutoModelForCausalLM.from_pretrained(MODEL_PATH).to(DEVICE)
model_context_window = getattr(model_local.config, 'max_position_embeddings', getattr(model_local.config, 'sliding_window', 4096))
max_prompt_len = model_context_window - MAX_LENGTH - 50
if max_prompt_len <= 0 : max_prompt_len = model_context_window // 2
inputs = tokenizer_local(prompt, return_tensors="pt", truncation=True, max_length=max_prompt_len).to(DEVICE)
with torch.no_grad():
outputs = model_local.generate(
**inputs, max_new_tokens=MAX_LENGTH,
eos_token_id=tokenizer_local.eos_token_id,
pad_token_id=tokenizer_local.pad_token_id if tokenizer_local.pad_token_id else tokenizer_local.eos_token_id,
do_sample=True, temperature=0.6, top_p=0.9
)
input_len = inputs.input_ids.shape[1]
analysis = tokenizer_local.decode(outputs[0][input_len:], skip_special_tokens=True)
return analysis.strip()
except Exception as e_local_llm:
print(f"Error en el fallback LLM local: {e_local_llm}")
traceback.print_exc()
return f"Análisis (fallback local): Error al cargar/ejecutar modelo LLM local: {e_local_llm}."
def process_and_plot(
file_obj,
biomass_eq1_ui, biomass_eq2_ui, biomass_eq3_ui,
biomass_param1_ui, biomass_param2_ui, biomass_param3_ui,
biomass_bound1_ui, biomass_bound2_ui, biomass_bound3_ui,
substrate_eq1_ui, substrate_eq2_ui, substrate_eq3_ui,
substrate_param1_ui, substrate_param2_ui, substrate_param3_ui,
substrate_bound1_ui, substrate_bound2_ui, substrate_bound3_ui,
product_eq1_ui, product_eq2_ui, product_eq3_ui,
product_param1_ui, product_param2_ui, product_param3_ui,
product_bound1_ui, product_bound2_ui, product_bound3_ui,
legend_position_ui,
show_legend_ui,
show_params_ui,
biomass_eq_count_ui,
substrate_eq_count_ui,
product_eq_count_ui
):
# Imagen y texto de error por defecto
error_img = create_error_image("Error en procesamiento")
error_analysis_text = "No se pudo generar el análisis debido a un error."
try:
if file_obj is None:
return error_img, "Error: Por favor, sube un archivo Excel."
try:
df = pd.read_excel(file_obj.name)
except Exception as e:
return error_img, f"Error al leer el archivo Excel: {e}\n{traceback.format_exc()}"
expected_cols = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
for col in expected_cols:
if col not in df.columns:
return error_img, f"Error: La columna '{col}' no se encuentra en el archivo Excel."
time_data = df['Tiempo'].values
biomass_data_exp = df['Biomasa'].values
substrate_data_exp = df['Sustrato'].values
product_data_exp = df['Producto'].values
# Asegurar que los contadores sean enteros válidos
try:
active_biomass_eqs = int(float(biomass_eq_count_ui))
active_substrate_eqs = int(float(substrate_eq_count_ui))
active_product_eqs = int(float(product_eq_count_ui))
except (TypeError, ValueError):
return error_img, "Error: Número de ecuaciones inválido."
all_eq_inputs = {
'biomass': (
[biomass_eq1_ui, biomass_eq2_ui, biomass_eq3_ui][:active_biomass_eqs],
[biomass_param1_ui, biomass_param2_ui, biomass_param3_ui][:active_biomass_eqs],
[biomass_bound1_ui, biomass_bound2_ui, biomass_bound3_ui][:active_biomass_eqs],
biomass_data_exp
),
'substrate': (
[substrate_eq1_ui, substrate_eq2_ui, substrate_eq3_ui][:active_substrate_eqs],
[substrate_param1_ui, substrate_param2_ui, substrate_param3_ui][:active_substrate_eqs],
[substrate_bound1_ui, substrate_bound2_ui, substrate_bound3_ui][:active_substrate_eqs],
substrate_data_exp
),
'product': (
[product_eq1_ui, product_eq2_ui, product_eq3_ui][:active_product_eqs],
[product_param1_ui, product_param2_ui, product_param3_ui][:active_product_eqs],
[product_bound1_ui, product_bound2_ui, product_bound3_ui][:active_product_eqs],
product_data_exp
)
}
model_handler = BioprocessModel()
fitted_results_for_plot = {'biomass': [], 'substrate': [], 'product': []}
results_for_llm_prompt = {'biomass': [], 'substrate': [], 'product': []}
biomass_params_for_s_p = None
for model_type, (eq_list, param_str_list, bound_str_list, exp_data) in all_eq_inputs.items():
if not (isinstance(exp_data, np.ndarray) and exp_data.size > 0 and np.any(np.isfinite(exp_data))):
print(f"Datos experimentales para {model_type} no válidos o vacíos, saltando ajuste.")
continue
for i in range(len(eq_list)):
eq_str, param_s, bound_s = eq_list[i], param_str_list[i], bound_str_list[i]
if not eq_str or not param_s: continue
try:
model_handler.set_model(model_type, eq_str, param_s)
num_p = len(model_handler.models[model_type]['params'])
l_b, u_b = parse_bounds_str(bound_s, num_p)
current_biomass_p = biomass_params_for_s_p if model_type in ['substrate', 'product'] else None
y_pred, popt = model_handler.fit_model(model_type, time_data, exp_data, bounds=(l_b, u_b), biomass_params_fitted=current_biomass_p)
current_params = model_handler.params.get(model_type, {}) # Obtener params del handler
r2_val = model_handler.r2.get(model_type, float('nan'))
rmse_val = model_handler.rmse.get(model_type, float('nan'))
fitted_results_for_plot[model_type].append({'equation': eq_str, 'y_pred': y_pred, 'params': current_params, 'R2': r2_val})
results_for_llm_prompt[model_type].append({'equation': eq_str, 'params_fitted': current_params, 'R2': r2_val, 'RMSE': rmse_val})
if model_type == 'biomass' and biomass_params_for_s_p is None and current_params:
biomass_params_for_s_p = current_params
except Exception as e_fit:
error_msg = f"Error ajustando {model_type} #{i+1} ('{eq_str}'): {e_fit}\n{traceback.format_exc()}"
print(error_msg); return error_img, error_msg
# Generar gráfico
fig, axs = plt.subplots(3, 1, figsize=(10, 18), sharex=True)
plot_config_map = {
axs[0]: (biomass_data_exp, 'Biomasa', fitted_results_for_plot['biomass']),
axs[1]: (substrate_data_exp, 'Sustrato', fitted_results_for_plot['sustrato']),
axs[2]: (product_data_exp, 'Producto', fitted_results_for_plot['producto'])
}
for ax, data_actual, ylabel, plot_results in plot_config_map.items():
if isinstance(data_actual, np.ndarray) and data_actual.size > 0 and np.any(np.isfinite(data_actual)):
ax.plot(time_data, data_actual, 'o', label=f'Datos {ylabel}', markersize=5, alpha=0.7)
else:
ax.text(0.5, 0.5, f"No hay datos para {ylabel}", transform=ax.transAxes, ha='center', va='center')
for idx, res_detail in enumerate(plot_results):
label = f'Modelo {idx+1} (R²:{res_detail.get("R2", float("nan")):.3f})'
ax.plot(time_data, res_detail['y_pred'], '-', label=label, linewidth=2)
ax.set_xlabel('Tiempo'); ax.set_ylabel(ylabel); ax.grid(True, linestyle=':', alpha=0.7)
if show_legend_ui: ax.legend(loc=legend_position_ui, fontsize='small')
if show_params_ui and plot_results:
param_display_texts = [f"Modelo {idx+1}:\n" + "\n".join([f" {k}: {v:.4g}" for k,v in res_detail.get('params',{}).items()]) for idx, res_detail in enumerate(plot_results)]
ax.text(0.02, 0.98 if not ('upper' in legend_position_ui) else 0.02, "\n---\n".join(param_display_texts),
transform=ax.transAxes, fontsize=7, verticalalignment='top' if not ('upper' in legend_position_ui) else 'bottom',
bbox=dict(boxstyle='round,pad=0.3', fc='lightyellow', alpha=0.8))
plt.tight_layout(rect=[0, 0, 1, 0.96]); fig.suptitle("Resultados del Ajuste de Modelos Cinéticos", fontsize=16)
buf = io.BytesIO(); plt.savefig(buf, format='png', dpi=150); buf.seek(0)
image_pil = Image.open(buf); plt.close(fig)
# Construir prompt y llamar a LLM
prompt_intro = "Eres un experto en modelado cinético de bioprocesos...\n\n" # (como antes)
prompt_details = json.dumps(results_for_llm_prompt, indent=2, ensure_ascii=False)
prompt_instructions = "\n\nPor favor, proporciona un análisis detallado...\n" # (como antes)
full_prompt = prompt_intro + prompt_details + prompt_instructions
analysis_text_llm = call_llm_analysis_service(full_prompt)
return image_pil, analysis_text_llm
except Exception as general_e:
error_trace = traceback.format_exc()
error_message_full = f"Error inesperado en process_and_plot: {general_e}\n{error_trace}"
print(error_message_full)
return create_error_image(f"Error: {general_e}"), error_message_full |