C10X commited on
Commit
ad1bddc
·
verified ·
1 Parent(s): 9949adf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -326
app.py CHANGED
@@ -1,326 +0,0 @@
1
- import os
2
- import subprocess
3
- import signal
4
- os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
5
- import gradio as gr
6
- import tempfile
7
- import torch
8
- from datasets import load_dataset
9
- from tqdm.auto import tqdm
10
- import re
11
- import numpy as np
12
- import gc
13
- import unicodedata
14
- from multiprocessing import cpu_count
15
- from transformers import LlamaTokenizerFast
16
- import fasttext
17
- from typing import Tuple, Dict, List, Generator
18
- import json
19
- import matplotlib.pyplot as plt
20
- import seaborn as sns
21
- from datetime import datetime
22
- import warnings
23
- from huggingface_hub import HfApi, create_repo, upload_file, snapshot_download, whoami
24
- from gradio_huggingfacehub_search import HuggingfaceHubSearch
25
- from pathlib import Path
26
- from textwrap import dedent
27
- from scipy import stats
28
- from apscheduler.schedulers.background import BackgroundScheduler
29
-
30
- warnings.filterwarnings('ignore')
31
-
32
- # Environment variables
33
- HF_TOKEN = os.environ.get("HF_TOKEN")
34
-
35
- # Global variables for model caching
36
- MODEL_CACHE_DIR = Path.home() / ".cache" / "ultra_fineweb"
37
- MODEL_CACHE_DIR.mkdir(parents=True, exist_ok=True)
38
- MODEL_LOADED = False
39
- fasttext_model = None
40
- tokenizer = None
41
-
42
- # CSS
43
- css = """
44
- .gradio-container {overflow-y: auto;}
45
- .gr-button-primary {
46
- background-color: #ff6b00 !important;
47
- border-color: #ff6b00 !important;
48
- }
49
- .gr-button-primary:hover {
50
- background-color: #ff8534 !important;
51
- border-color: #ff8534 !important;
52
- }
53
- """
54
-
55
- # HTML templates
56
- TITLE = """
57
- <div style="text-align: center; margin-bottom: 30px;">
58
- <h1 style="font-size: 36px; margin-bottom: 10px;">Create your own Dataset Quality Scores, blazingly fast ⚡!</h1>
59
- <p style="font-size: 16px; color: #666;">The space takes a HF dataset as input, scores it and provides statistics and quality distribution.</p>
60
- </div>
61
- """
62
-
63
- # Switched to Markdown for better theme compatibility (dark/light mode)
64
- DESCRIPTION_MD = """
65
- ### 📋 How it works:
66
- 1. Choose a dataset from Hugging Face Hub.
67
- 2. The Ultra-FineWeb classifier will score each text sample.
68
- 3. View quality distribution and download the scored dataset.
69
- 4. Optionally, upload the results to a new repository on your Hugging Face account.
70
-
71
- **Note:** The first run will download the model (~347MB), which may take a moment.
72
- """
73
-
74
- # --- Helper Functions ---
75
- def escape(s: str) -> str:
76
- """Escape HTML for safe display"""
77
- return str(s).replace("&", "&").replace("<", "<").replace(">", ">").replace('"', """).replace("\n", "<br/>")
78
-
79
- def fasttext_preprocess(content: str, tokenizer) -> str:
80
- if not isinstance(content, str): return ""
81
- content = re.sub(r'\n{3,}', '\n\n', content).lower()
82
- content = ''.join(c for c in unicodedata.normalize('NFKD', content) if unicodedata.category(c) != 'Mn')
83
- token_ids = tokenizer.encode(content, add_special_tokens=False)
84
- content = ' '.join([tokenizer.decode([token_id]) for token_id in token_ids])
85
- content = re.sub(r'\n', ' n ', content).replace('\r', '').replace('\t', ' ')
86
- return re.sub(r' +', ' ', content).strip()
87
-
88
- def fasttext_infer(norm_content: str, model) -> Tuple[str, float]:
89
- pred_label, pred_prob = model.predict(norm_content)
90
- pred_label = pred_label[0]
91
- _score = min(pred_prob.tolist()[0], 1.0)
92
- if pred_label == "__label__neg":
93
- _score = 1 - _score
94
- return pred_label, _score
95
-
96
- def load_models():
97
- global MODEL_LOADED, fasttext_model, tokenizer
98
- if MODEL_LOADED: return True
99
- try:
100
- model_dir = MODEL_CACHE_DIR / "Ultra-FineWeb-classifier"
101
- if not model_dir.exists():
102
- snapshot_download(repo_id="openbmb/Ultra-FineWeb-classifier", local_dir=str(model_dir), local_dir_use_symlinks=False)
103
- fasttext_path = model_dir / "classifiers" / "ultra_fineweb_en.bin"
104
- tokenizer_path = model_dir / "local_tokenizer"
105
- fasttext_model = fasttext.load_model(str(fasttext_path))
106
- tokenizer = LlamaTokenizerFast.from_pretrained(str(tokenizer_path) if tokenizer_path.exists() else "meta-llama/Llama-2-7b-hf")
107
- MODEL_LOADED = True
108
- return True
109
- except Exception as e:
110
- gr.Warning(f"Failed to load models: {e}")
111
- return False
112
-
113
- def create_quality_plot(scores: List[float], dataset_name: str) -> str:
114
- with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
115
- output_path = tmpfile.name
116
- plt.figure(figsize=(10, 6))
117
- sns.histplot(scores, bins=50, kde=True, color='#6B7FD7', edgecolor='black')
118
- mean_score, median_score = np.mean(scores), np.median(scores)
119
- plt.axvline(mean_score, color='green', linestyle='--', linewidth=2, label=f'Mean: {mean_score:.3f}')
120
- plt.axvline(median_score, color='orange', linestyle=':', linewidth=2, label=f'Median: {median_score:.3f}')
121
- plt.xlabel('Quality Score'); plt.ylabel('Density')
122
- plt.title(f'Quality Score Distribution - {dataset_name}', fontweight='bold')
123
- plt.legend(); plt.grid(axis='y', alpha=0.3); plt.xlim(0, 1)
124
- plt.tight_layout(); plt.savefig(output_path, dpi=150)
125
- plt.close()
126
- return output_path
127
-
128
- # UPDATED: This function is now a generator to yield live log updates.
129
- def process_dataset(
130
- model_id: str,
131
- dataset_split: str,
132
- text_column: str,
133
- sample_size: int,
134
- batch_size: int,
135
- progress=gr.Progress(track_tqdm=True)
136
- ) -> Generator:
137
- log_text = ""
138
- # Helper to update and yield log messages
139
- def update_log(msg):
140
- nonlocal log_text
141
- timestamp = datetime.now().strftime('%H:%M:%S')
142
- log_text += f"[{timestamp}] {msg}\n"
143
- # Yield updates for the log, keep other components hidden/empty
144
- return (log_text, None, None, None, None, gr.update(visible=False), gr.update(visible=False))
145
-
146
- try:
147
- yield update_log("Starting process...")
148
-
149
- yield update_log("Loading scoring models...")
150
- if not load_models():
151
- raise gr.Error("Failed to load scoring models. Please check logs.")
152
- yield update_log("Models loaded successfully.")
153
-
154
- yield update_log(f"Loading dataset '{model_id}' split '{dataset_split}'...")
155
- dataset = load_dataset(model_id, split=dataset_split, streaming=False)
156
- yield update_log("Dataset loaded.")
157
-
158
- if text_column not in dataset.column_names:
159
- raise gr.Error(f"Column '{text_column}' not found. Available: {', '.join(dataset.column_names)}")
160
-
161
- actual_samples = min(sample_size, len(dataset))
162
- dataset = dataset.select(range(actual_samples))
163
-
164
- yield update_log(f"Starting to score {actual_samples:,} samples...")
165
- scores, scored_data = [], []
166
- for i in tqdm(range(0, actual_samples, batch_size), desc="Scoring batches"):
167
- batch = dataset[i:min(i + batch_size, actual_samples)]
168
- for text in batch[text_column]:
169
- norm_content = fasttext_preprocess(text, tokenizer)
170
- label, score = fasttext_infer(norm_content, fasttext_model) if norm_content else ("__label__neg", 0.0)
171
- scores.append(score)
172
- scored_data.append({'text': text, 'quality_score': score, 'predicted_label': label})
173
-
174
- yield update_log("Scoring complete. Generating results and plot...")
175
- stats_dict = {'dataset_id': model_id, 'processed_samples': actual_samples, 'statistics': {'mean': float(np.mean(scores)), 'median': float(np.median(scores))}}
176
-
177
- plot_file = create_quality_plot(scores, model_id.split('/')[-1])
178
-
179
- with tempfile.NamedTemporaryFile('w', suffix=".jsonl", delete=False, encoding='utf-8') as f:
180
- output_file_path = f.name
181
- for item in scored_data: f.write(json.dumps(item, ensure_ascii=False) + '\n')
182
-
183
- with tempfile.NamedTemporaryFile('w', suffix=".json", delete=False, encoding='utf-8') as f:
184
- stats_file_path = f.name
185
- json.dump(stats_dict, f, indent=2)
186
-
187
- summary_md = f"""
188
- #### ✅ Scoring Completed!
189
- - **Dataset:** `{model_id}`
190
- - **Processed Samples:** `{actual_samples:,}`
191
- - **Mean Score:** `{stats_dict['statistics']['mean']:.3f}`
192
- - **Median Score:** `{stats_dict['statistics']['median']:.3f}`
193
- """
194
-
195
- yield update_log("Process finished successfully!")
196
-
197
- # Final return with all components visible and populated
198
- yield (log_text, summary_md, output_file_path, stats_file_path, plot_file, gr.update(visible=True), gr.update(visible=True))
199
-
200
- except Exception as e:
201
- error_log = update_log(f"ERROR: {e}")[0]
202
- error_summary_md = f"### ❌ Error\n```\n{escape(str(e))}\n```"
203
- yield (error_log, error_summary_md, None, None, None, gr.update(visible=True), gr.update(visible=False))
204
-
205
- # This function remains the same
206
- def upload_to_hub(
207
- scored_file: str, stats_file: str, plot_file: str, new_dataset_id: str,
208
- private: bool, hf_token: str, progress=gr.Progress(track_tqdm=True)
209
- ) -> str:
210
- if not hf_token: return '❌ <span style="color: red;">Please provide your Hugging Face token.</span>'
211
- if not all([scored_file, new_dataset_id]): return '❌ <span style="color: red;">Missing scored file or new dataset ID.</span>'
212
-
213
- try:
214
- progress(0.1, desc="Connecting to Hub...")
215
- api = HfApi(token=hf_token)
216
- username = whoami(token=hf_token)["name"]
217
- repo_id = f"{username}/{new_dataset_id}" if "/" not in new_dataset_id else new_dataset_id
218
-
219
- progress(0.2, desc=f"Creating repo: {repo_id}")
220
- repo_url = create_repo(repo_id=repo_id, repo_type="dataset", exist_ok=True, private=private, token=hf_token).repo_url
221
-
222
- progress(0.4, desc="Uploading files...")
223
- upload_file(path_or_fileobj=scored_file, path_in_repo="data/scored_dataset.jsonl", repo_id=repo_id, repo_type="dataset", token=hf_token)
224
- if stats_file and os.path.exists(stats_file):
225
- upload_file(path_or_fileobj=stats_file, path_in_repo="statistics.json", repo_id=repo_id, repo_type="dataset", token=hf_token)
226
- if plot_file and os.path.exists(plot_file):
227
- upload_file(path_or_fileobj=plot_file, path_in_repo="quality_distribution.png", repo_id=repo_id, repo_type="dataset", token=hf_token)
228
-
229
- readme_content = dedent(f"""---
230
- license: apache-2.0
231
- ---
232
- # Quality-Scored Dataset: {repo_id.split('/')[-1]}
233
- This dataset was scored for quality using the [Dataset Quality Scorer Space](https://huggingface.co/spaces/ggml-org/dataset-quality-scorer).
234
- ![Quality Distribution](quality_distribution.png)
235
- ## Usage
236
- ```python
237
- from datasets import load_dataset
238
- dataset = load_dataset("{repo_id}", split="train")
239
- ```""").strip()
240
-
241
- upload_file(path_or_fileobj=readme_content.encode(), path_in_repo="README.md", repo_id=repo_id, repo_type="dataset", token=hf_token)
242
- progress(1.0, "Done!")
243
- return f'✅ <span style="color: green;">Successfully uploaded to <a href="{repo_url}" target="_blank">{repo_id}</a></span>'
244
-
245
- except Exception as e:
246
- return f'❌ <span style="color: red;">Upload failed: {escape(str(e))}</span>'
247
-
248
-
249
- def create_demo():
250
- with gr.Blocks(css=css, title="Dataset Quality Scorer") as demo:
251
- gr.HTML(TITLE)
252
- gr.Markdown(DESCRIPTION_MD)
253
-
254
- with gr.Row():
255
- with gr.Column(scale=3):
256
- gr.Markdown("### 1. Configure Dataset")
257
- dataset_search = HuggingfaceHubSearch(label="Hub Dataset ID", search_type="dataset", value="roneneldan/TinyStories")
258
- text_column = gr.Textbox(label="Text Column Name", value="text")
259
- with gr.Column(scale=2):
260
- gr.Markdown("### 2. Configure Scoring")
261
- dataset_split = gr.Dropdown(["train", "validation", "test"], label="Split", value="train")
262
- with gr.Row():
263
- sample_size = gr.Number(label="Sample Size", value=1000, minimum=100, step=100)
264
- batch_size = gr.Number(label="Batch Size", value=32, minimum=1, step=1)
265
-
266
- live_log = gr.Textbox(label="Live Log", interactive=False, lines=8, max_lines=20)
267
-
268
- with gr.Row():
269
- clear_btn = gr.Button("Clear", variant="secondary")
270
- process_btn = gr.Button("🚀 Start Scoring", variant="primary", size="lg")
271
-
272
- # --- Results and Upload Sections (Initially Hidden) ---
273
- with gr.Group(visible=False) as results_group:
274
- gr.Markdown("--- \n ### 3. Review Results")
275
- with gr.Row():
276
- with gr.Column(scale=1):
277
- summary_output = gr.Markdown(label="Summary")
278
- scored_file_output = gr.File(label="📄 Download Scored Dataset (.jsonl)", type="filepath")
279
- stats_file_output = gr.File(label="📊 Download Statistics (.json)", type="filepath")
280
- with gr.Column(scale=1):
281
- plot_output = gr.Image(label="Quality Distribution", show_label=True)
282
-
283
- with gr.Group(visible=False) as upload_group:
284
- gr.Markdown("--- \n ### 4. (Optional) Upload to Hugging Face Hub")
285
- hf_token_input = gr.Textbox(label="Hugging Face Token", type="password", placeholder="hf_...", value=HF_TOKEN or "")
286
- new_dataset_id = gr.Textbox(label="New Dataset Name", placeholder="my-scored-dataset")
287
- private_checkbox = gr.Checkbox(label="Make dataset private", value=False)
288
- upload_btn = gr.Button("📤 Upload to Hub", variant="primary")
289
- upload_status = gr.HTML()
290
-
291
- # --- Event Handlers ---
292
- def clear_form():
293
- return "roneneldan/TinyStories", "train", "text", 1000, 32, "", None, None, None, None, gr.update(visible=False), gr.update(visible=False), ""
294
-
295
- outputs_list = [
296
- live_log, summary_output, scored_file_output, stats_file_output, plot_output,
297
- results_group, upload_group
298
- ]
299
-
300
- process_btn.click(
301
- fn=process_dataset,
302
- inputs=[dataset_search, dataset_split, text_column, sample_size, batch_size],
303
- outputs=outputs_list
304
- )
305
-
306
- clear_btn.click(
307
- fn=clear_form,
308
- outputs=[
309
- dataset_search, dataset_split, text_column, sample_size, batch_size,
310
- live_log, summary_output, scored_file_output, stats_file_output, plot_output,
311
- results_group, upload_group, upload_status
312
- ]
313
- )
314
-
315
- upload_btn.click(
316
- fn=upload_to_hub,
317
- inputs=[scored_file_output, stats_file_output, plot_output, new_dataset_id, private_checkbox, hf_token_input],
318
- outputs=[upload_status]
319
- )
320
- return demo
321
-
322
- # --- App Execution ---
323
- demo = create_demo()
324
-
325
- if __name__ == "__main__":
326
- demo.queue().launch(debug=False, show_api=False)