# Copyright 2025 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F import whisper import librosa from copy import deepcopy from tts.utils.text_utils.ph_tone_convert import split_ph_timestamp, split_ph from tts.utils.audio_utils.align import mel2token_to_dur ''' Graphme to phoneme function ''' def g2p(self, text_inp): # prepare inputs txt_token = self.g2p_tokenizer('' + text_inp + '')['input_ids'] input_ids = torch.LongTensor([txt_token+[145+self.speech_start_idx]]).to(self.device) # model forward with torch.cuda.amp.autocast(dtype=self.precision, enabled=True): outputs = self.g2p_model.generate(input_ids, max_new_tokens=256, do_sample=True, top_k=1, eos_token_id=800+1+self.speech_start_idx) # process outputs ph_tokens = outputs[:, len(txt_token):-1]-self.speech_start_idx ph_pred, tone_pred = split_ph(ph_tokens[0]) ph_pred, tone_pred = ph_pred[None, :].to(self.device), tone_pred[None, :].to(self.device) return ph_pred, tone_pred ''' Get phoneme2mel align of prompt speech ''' def align(self, wav): with torch.inference_mode(): whisper_wav = librosa.resample(wav, orig_sr=self.sr, target_sr=16000) mel = torch.FloatTensor(whisper.log_mel_spectrogram(whisper_wav).T).to(self.device)[None].transpose(1,2) prompt_max_frame = mel.size(2) // self.fm * self.fm mel = mel[:, :, :prompt_max_frame] token = torch.LongTensor([[798]]).to(self.device) audio_features = self.aligner_lm.embed_audio(mel) for i in range(768): with torch.cuda.amp.autocast(dtype=self.precision, enabled=True): logits = self.aligner_lm.logits(token, audio_features, None) token_pred = torch.argmax(F.softmax(logits[:, -1], dim=-1), 1)[None] token = torch.cat([token, token_pred], dim=1) if token_pred[0] == 799: break alignment_tokens = token ph_ref, tone_ref, dur_ref, _ = split_ph_timestamp(deepcopy(alignment_tokens)[0, 1:-1]) ph_ref = torch.Tensor(ph_ref)[None].to(self.device) tone_ref = torch.Tensor(tone_ref)[None].to(self.device) if dur_ref.sum() < prompt_max_frame: dur_ref[-1] += prompt_max_frame - dur_ref.sum() elif dur_ref.sum() > prompt_max_frame: len_diff = dur_ref.sum() - prompt_max_frame while True: for i in range(len(dur_ref)): dur_ref[i] -= 1 len_diff -= 1 if len_diff == 0: break if len_diff == 0: break mel2ph_ref = self.length_regulator(dur_ref[None]).to(self.device) mel2ph_ref = mel2ph_ref[:, :mel2ph_ref.size(1)//self.fm*self.fm] return ph_ref, tone_ref, mel2ph_ref ''' Duration Prompting ''' def make_dur_prompt(self, mel2ph_ref, ph_ref, tone_ref): dur_tokens_2d_ = mel2token_to_dur(mel2ph_ref, ph_ref.shape[1]).clamp( max=self.hp_dur_model['dur_code_size'] - 1) + 1 ctx_dur_tokens = dur_tokens_2d_.clone().flatten(0, 1).to(self.device) txt_tokens_flat_ = ph_ref.flatten(0, 1) ctx_dur_tokens = ctx_dur_tokens[txt_tokens_flat_ > 0][None] last_dur_pos_prompt = ctx_dur_tokens.shape[1] dur_spk_pos_ids_flat = range(0, last_dur_pos_prompt) dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device) with torch.cuda.amp.autocast(dtype=self.precision, enabled=True): _, incremental_state_dur_prompt = self.dur_model.infer( ph_ref, {'tone': tone_ref}, None, None, None, ctx_vqcodes=ctx_dur_tokens, spk_pos_ids_flat=dur_spk_pos_ids_flat, return_state=True) return incremental_state_dur_prompt, ctx_dur_tokens ''' Duration Prediction ''' def dur_pred(self, ctx_dur_tokens, incremental_state_dur_prompt, ph_pred, tone_pred, seg_i, dur_disturb, dur_alpha, is_first, is_final): last_dur_token = ctx_dur_tokens[:, -1:] last_dur_pos_prompt = ctx_dur_tokens.shape[1] incremental_state_dur = deepcopy(incremental_state_dur_prompt) txt_len = ph_pred.shape[1] dur_spk_pos_ids_flat = range(last_dur_pos_prompt, last_dur_pos_prompt + txt_len) dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device) last_dur_pos_prompt = last_dur_pos_prompt + txt_len with torch.cuda.amp.autocast(dtype=self.precision, enabled=True): dur_pred = self.dur_model.infer( ph_pred, {'tone': tone_pred}, None, None, None, incremental_state=incremental_state_dur, first_decoder_inp=last_dur_token, spk_pos_ids_flat=dur_spk_pos_ids_flat, ) dur_pred = dur_pred - 1 dur_pred = dur_pred.clamp(0, self.hp_dur_model['dur_code_size'] - 1) # if is_final: # dur_pred[:, -1] = dur_pred[:, -1].clamp(64, 128) # else: # dur_pred[:, -1] = dur_pred[:, -1].clamp(48, 128) # if seg_i > 0: # dur_pred[:, 0] = 0 # ['。', '!', '?', 'sil'] for sil_token in [148, 153, 166, 145]: dur_pred[ph_pred==sil_token].clamp_min(32) # [',', ';'] for sil_token in [163, 165]: dur_pred[ph_pred==sil_token].clamp_min(16) if not is_final: # add 0.32ms for crossfade dur_pred[:, -1] = dur_pred[:, -1] + 32 else: dur_pred[:, -1] = dur_pred[:, -1].clamp(64, 128) ''' DiT target speech generation ''' dur_disturb_choice = (torch.rand_like(dur_pred.float()) > 0.5).float() dur_disturb_r = 1 + torch.rand_like(dur_pred.float()) * dur_disturb dur_pred = dur_pred * dur_disturb_r * dur_disturb_choice + \ dur_pred / dur_disturb_r * (1 - dur_disturb_choice) dur_pred = torch.round(dur_pred * dur_alpha).clamp(0, 127) if is_first: dur_pred[:, 0] = 8 dur_sum = dur_pred.sum() npad = self.fm - dur_sum % self.fm if npad < self.fm: dur_pred[:, -1] += npad mel2ph_pred = self.length_regulator(dur_pred).to(self.device) return mel2ph_pred def prepare_inputs_for_dit(self, mel2ph_ref, mel2ph_pred, ph_ref, tone_ref, ph_pred, tone_pred, vae_latent): # Prepare duration token mel2ph_pred = torch.cat((mel2ph_ref, mel2ph_pred+ph_ref.size(1)), dim=1) mel2ph_pred = mel2ph_pred[:, :mel2ph_pred.size(1)//self.fm*self.fm].repeat(3, 1) # Prepare phone and tone token ph_pred = torch.cat((ph_ref, ph_pred), dim=1) tone_pred = torch.cat((tone_ref, tone_pred), dim=1) # Disable the English tone (set them to 3)""" en_tone_idx = ~((tone_pred == 4) | ( (11 <= tone_pred) & (tone_pred <= 15)) | (tone_pred == 0)) tone_pred[en_tone_idx] = 3 # Prepare cfg inputs ph_seq = torch.cat([ph_pred, ph_pred, torch.full(ph_pred.size(), self.cfg_mask_token_phone, device=self.device)], 0) tone_seq = torch.cat([tone_pred, tone_pred, torch.full(tone_pred.size(), self.cfg_mask_token_tone, device=self.device)], 0) target_size = mel2ph_pred.size(1)//self.vae_stride vae_latent_ = vae_latent.repeat(3, 1, 1) ctx_mask = torch.ones_like(vae_latent_[:, :, 0:1]) vae_latent_ = F.pad(vae_latent_, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0) vae_latent_[1:] = 0.0 ctx_mask = F.pad(ctx_mask, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0) return { 'phone': ph_seq, 'tone': tone_seq, "lat_ctx": vae_latent_ * ctx_mask, "ctx_mask": ctx_mask, "dur": mel2ph_pred, }