# Copyright 2025 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def mel2token_to_dur(mel2token, T_txt=None, max_dur=None): is_torch = isinstance(mel2token, torch.Tensor) has_batch_dim = True if not is_torch: mel2token = torch.LongTensor(mel2token) if T_txt is None: T_txt = mel2token.max() if len(mel2token.shape) == 1: mel2token = mel2token[None, ...] has_batch_dim = False B, _ = mel2token.shape dur = mel2token.new_zeros(B, T_txt + 1).scatter_add(1, mel2token, torch.ones_like(mel2token)) dur = dur[:, 1:] if max_dur is not None: dur = dur.clamp(max=max_dur) if not is_torch: dur = dur.numpy() if not has_batch_dim: dur = dur[0] return dur