MegaTTS3 / tts /frontend_function.py
ZiyueJiang's picture
first commit for huggingface space
593f3bc
raw
history blame
8.02 kB
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F
import whisper
import librosa
from copy import deepcopy
from tts.utils.text_utils.ph_tone_convert import split_ph_timestamp, split_ph
from tts.utils.audio_utils.align import mel2token_to_dur
''' Graphme to phoneme function '''
def g2p(self, text_inp):
# prepare inputs
txt_token = self.g2p_tokenizer('<BOT>' + text_inp + '<BOS>')['input_ids']
input_ids = torch.LongTensor([txt_token+[145+self.speech_start_idx]]).to(self.device)
# model forward
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
outputs = self.g2p_model.generate(input_ids, max_new_tokens=256, do_sample=True, top_k=1, eos_token_id=800+1+self.speech_start_idx)
# process outputs
ph_tokens = outputs[:, len(txt_token):-1]-self.speech_start_idx
ph_pred, tone_pred = split_ph(ph_tokens[0])
ph_pred, tone_pred = ph_pred[None, :].to(self.device), tone_pred[None, :].to(self.device)
return ph_pred, tone_pred
''' Get phoneme2mel align of prompt speech '''
def align(self, wav):
with torch.inference_mode():
whisper_wav = librosa.resample(wav, orig_sr=self.sr, target_sr=16000)
mel = torch.FloatTensor(whisper.log_mel_spectrogram(whisper_wav).T).to(self.device)[None].transpose(1,2)
prompt_max_frame = mel.size(2) // self.fm * self.fm
mel = mel[:, :, :prompt_max_frame]
token = torch.LongTensor([[798]]).to(self.device)
audio_features = self.aligner_lm.embed_audio(mel)
for i in range(768):
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
logits = self.aligner_lm.logits(token, audio_features, None)
token_pred = torch.argmax(F.softmax(logits[:, -1], dim=-1), 1)[None]
token = torch.cat([token, token_pred], dim=1)
if token_pred[0] == 799:
break
alignment_tokens = token
ph_ref, tone_ref, dur_ref, _ = split_ph_timestamp(deepcopy(alignment_tokens)[0, 1:-1])
ph_ref = torch.Tensor(ph_ref)[None].to(self.device)
tone_ref = torch.Tensor(tone_ref)[None].to(self.device)
if dur_ref.sum() < prompt_max_frame:
dur_ref[-1] += prompt_max_frame - dur_ref.sum()
elif dur_ref.sum() > prompt_max_frame:
len_diff = dur_ref.sum() - prompt_max_frame
while True:
for i in range(len(dur_ref)):
dur_ref[i] -= 1
len_diff -= 1
if len_diff == 0:
break
if len_diff == 0:
break
mel2ph_ref = self.length_regulator(dur_ref[None]).to(self.device)
mel2ph_ref = mel2ph_ref[:, :mel2ph_ref.size(1)//self.fm*self.fm]
return ph_ref, tone_ref, mel2ph_ref
''' Duration Prompting '''
def make_dur_prompt(self, mel2ph_ref, ph_ref, tone_ref):
dur_tokens_2d_ = mel2token_to_dur(mel2ph_ref, ph_ref.shape[1]).clamp(
max=self.hp_dur_model['dur_code_size'] - 1) + 1
ctx_dur_tokens = dur_tokens_2d_.clone().flatten(0, 1).to(self.device)
txt_tokens_flat_ = ph_ref.flatten(0, 1)
ctx_dur_tokens = ctx_dur_tokens[txt_tokens_flat_ > 0][None]
last_dur_pos_prompt = ctx_dur_tokens.shape[1]
dur_spk_pos_ids_flat = range(0, last_dur_pos_prompt)
dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device)
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
_, incremental_state_dur_prompt = self.dur_model.infer(
ph_ref, {'tone': tone_ref}, None, None, None,
ctx_vqcodes=ctx_dur_tokens, spk_pos_ids_flat=dur_spk_pos_ids_flat, return_state=True)
return incremental_state_dur_prompt, ctx_dur_tokens
''' Duration Prediction '''
def dur_pred(self, ctx_dur_tokens, incremental_state_dur_prompt, ph_pred, tone_pred, seg_i, dur_disturb, dur_alpha, is_first, is_final):
last_dur_token = ctx_dur_tokens[:, -1:]
last_dur_pos_prompt = ctx_dur_tokens.shape[1]
incremental_state_dur = deepcopy(incremental_state_dur_prompt)
txt_len = ph_pred.shape[1]
dur_spk_pos_ids_flat = range(last_dur_pos_prompt, last_dur_pos_prompt + txt_len)
dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device)
last_dur_pos_prompt = last_dur_pos_prompt + txt_len
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
dur_pred = self.dur_model.infer(
ph_pred, {'tone': tone_pred}, None, None, None,
incremental_state=incremental_state_dur,
first_decoder_inp=last_dur_token,
spk_pos_ids_flat=dur_spk_pos_ids_flat,
)
dur_pred = dur_pred - 1
dur_pred = dur_pred.clamp(0, self.hp_dur_model['dur_code_size'] - 1)
# if is_final:
# dur_pred[:, -1] = dur_pred[:, -1].clamp(64, 128)
# else:
# dur_pred[:, -1] = dur_pred[:, -1].clamp(48, 128)
# if seg_i > 0:
# dur_pred[:, 0] = 0
# ['。', '!', '?', 'sil']
for sil_token in [148, 153, 166, 145]:
dur_pred[ph_pred==sil_token].clamp_min(32)
# [',', ';']
for sil_token in [163, 165]:
dur_pred[ph_pred==sil_token].clamp_min(16)
if not is_final:
# add 0.32ms for crossfade
dur_pred[:, -1] = dur_pred[:, -1] + 32
else:
dur_pred[:, -1] = dur_pred[:, -1].clamp(64, 128)
''' DiT target speech generation '''
dur_disturb_choice = (torch.rand_like(dur_pred.float()) > 0.5).float()
dur_disturb_r = 1 + torch.rand_like(dur_pred.float()) * dur_disturb
dur_pred = dur_pred * dur_disturb_r * dur_disturb_choice + \
dur_pred / dur_disturb_r * (1 - dur_disturb_choice)
dur_pred = torch.round(dur_pred * dur_alpha).clamp(0, 127)
if is_first:
dur_pred[:, 0] = 8
dur_sum = dur_pred.sum()
npad = self.fm - dur_sum % self.fm
if npad < self.fm:
dur_pred[:, -1] += npad
mel2ph_pred = self.length_regulator(dur_pred).to(self.device)
return mel2ph_pred
def prepare_inputs_for_dit(self, mel2ph_ref, mel2ph_pred, ph_ref, tone_ref, ph_pred, tone_pred, vae_latent):
# Prepare duration token
mel2ph_pred = torch.cat((mel2ph_ref, mel2ph_pred+ph_ref.size(1)), dim=1)
mel2ph_pred = mel2ph_pred[:, :mel2ph_pred.size(1)//self.fm*self.fm].repeat(3, 1)
# Prepare phone and tone token
ph_pred = torch.cat((ph_ref, ph_pred), dim=1)
tone_pred = torch.cat((tone_ref, tone_pred), dim=1)
# Disable the English tone (set them to 3)"""
en_tone_idx = ~((tone_pred == 4) | ( (11 <= tone_pred) & (tone_pred <= 15)) | (tone_pred == 0))
tone_pred[en_tone_idx] = 3
# Prepare cfg inputs
ph_seq = torch.cat([ph_pred, ph_pred, torch.full(ph_pred.size(), self.cfg_mask_token_phone, device=self.device)], 0)
tone_seq = torch.cat([tone_pred, tone_pred, torch.full(tone_pred.size(), self.cfg_mask_token_tone, device=self.device)], 0)
target_size = mel2ph_pred.size(1)//self.vae_stride
vae_latent_ = vae_latent.repeat(3, 1, 1)
ctx_mask = torch.ones_like(vae_latent_[:, :, 0:1])
vae_latent_ = F.pad(vae_latent_, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0)
vae_latent_[1:] = 0.0
ctx_mask = F.pad(ctx_mask, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0)
return {
'phone': ph_seq,
'tone': tone_seq,
"lat_ctx": vae_latent_ * ctx_mask,
"ctx_mask": ctx_mask,
"dur": mel2ph_pred,
}