Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 ByteDance and/or its affiliates. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
t = torch.arange(end, device=freqs.device) # type: ignore | |
freqs = torch.outer(t, freqs).float() # type: ignore | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
return freqs_cis | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) | |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_emb( | |
xq: torch.Tensor, | |
xk: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
return xq_out.type_as(xq), xk_out.type_as(xk) | |
class AdaLNZero(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(dim, dim * 6) | |
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
def forward(self, x, emb=None): | |
emb = self.linear(self.silu(emb)) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1) | |
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp | |
class AdaLNZero_Out(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(dim, dim * 2) | |
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
def forward(self, x, emb): | |
emb = self.linear(self.silu(emb)) | |
scale, shift = torch.chunk(emb, 2, dim=1) | |
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] | |
return x | |
class Attention(nn.Module): | |
def __init__(self, encoder_dim, encoder_n_heads, max_seq_len): | |
super().__init__() | |
self.encoder_n_kv_heads = encoder_n_heads | |
model_parallel_size = 1 | |
self.n_local_heads = encoder_n_heads // model_parallel_size | |
self.n_local_kv_heads = self.encoder_n_kv_heads // model_parallel_size | |
self.n_rep = self.n_local_heads // self.n_local_kv_heads | |
self.head_dim = encoder_dim // encoder_n_heads | |
self.wq = nn.Linear( | |
encoder_dim, | |
encoder_n_heads * self.head_dim, | |
) | |
self.wk = nn.Linear( | |
encoder_dim, | |
self.encoder_n_kv_heads * self.head_dim, | |
) | |
self.wv = nn.Linear( | |
encoder_dim, | |
self.encoder_n_kv_heads * self.head_dim, | |
) | |
self.wo = nn.Linear( | |
encoder_n_heads * self.head_dim, | |
encoder_dim, | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
start_pos: int, | |
freqs_cis: torch.Tensor, | |
mask: Optional[torch.Tensor], | |
): | |
bsz, seqlen, _ = x.shape | |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) | |
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) | |
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) | |
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) | |
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) | |
keys = xk.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim) | |
values = xv.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim) | |
output = F.scaled_dot_product_attention(xq, keys, values, mask[:, None, None, :], is_causal=False) | |
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) | |
return self.wo(output) | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
multiple_of: int, | |
ffn_dim_multiplier: Optional[float], | |
): | |
super().__init__() | |
if ffn_dim_multiplier is not None: | |
hidden_dim = int(ffn_dim_multiplier * hidden_dim) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.w1 = nn.Linear( | |
dim, hidden_dim | |
) | |
self.w2 = nn.Linear( | |
hidden_dim, dim | |
) | |
def forward(self, x): | |
return self.w2(F.silu(self.w1(x))) | |
class TransformerBlock(nn.Module): | |
def __init__(self, encoder_dim, encoder_n_heads, max_seq_len): | |
super().__init__() | |
self.encoder_n_heads = encoder_n_heads | |
self.encoder_dim = encoder_dim | |
self.head_dim = encoder_dim // encoder_n_heads | |
self.attention = Attention(encoder_dim, encoder_n_heads, max_seq_len) | |
self.feed_forward = FeedForward( | |
dim=encoder_dim, | |
hidden_dim=2 * encoder_dim, | |
multiple_of=256, | |
ffn_dim_multiplier=None, | |
) | |
self.attention_norm = AdaLNZero(encoder_dim) | |
self.ffn_norm = nn.LayerNorm(encoder_dim, elementwise_affine=False, eps=1e-6) | |
def forward( | |
self, | |
x: torch.Tensor, | |
t: torch.Tensor, | |
start_pos: int, | |
freqs_cis: torch.Tensor, | |
mask: Optional[torch.Tensor], | |
): | |
""" | |
Perform a forward pass through the TransformerBlock. | |
Args: | |
x (torch.Tensor): Input tensor. | |
start_pos (int): Starting position for attention caching. | |
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. | |
mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None. | |
Returns: | |
torch.Tensor: Output tensor after applying attention and feedforward layers. | |
""" | |
# pre-norm & modulation for attention input | |
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attention_norm(x, emb=t) | |
# attention | |
attn_output = self.attention(norm, start_pos, freqs_cis, mask=mask) | |
# process attention output for input x | |
h = x + gate_msa.unsqueeze(1) * attn_output | |
norm = self.ffn_norm(h) * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.feed_forward(norm) | |
out = h + gate_mlp.unsqueeze(1) * ff_output | |
return out | |
class Transformer(nn.Module): | |
def __init__(self, encoder_n_layers, encoder_dim, encoder_n_heads, max_seq_len): | |
super().__init__() | |
# Decoder | |
self.layers = torch.nn.ModuleList() | |
for _ in range(encoder_n_layers): | |
self.layers.append(TransformerBlock(encoder_dim, encoder_n_heads, max_seq_len)) | |
self.norm = AdaLNZero_Out(encoder_dim) | |
self.out_proj = nn.Linear(encoder_dim, encoder_dim) | |
# Rope embedding | |
freqs_cis = precompute_freqs_cis( | |
encoder_dim // encoder_n_heads, max_seq_len | |
) | |
self.register_buffer("freqs_cis", torch.view_as_real(freqs_cis), persistent=False) | |
def forward(self, x, t, attn_mask, start_pos=0): | |
freqs_cis = torch.view_as_complex(self.freqs_cis.float())[start_pos: start_pos + x.size(1)] | |
for i, layer in enumerate(self.layers): | |
x = layer(x, t, start_pos, freqs_cis, attn_mask) | |
x = self.norm(x, t) | |
x = self.out_proj(x) | |
return x |