Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 ByteDance and/or its affiliates. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import torch | |
from torch import nn | |
class SinusPositionEmbedding(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, x, scale=1000): | |
device = x.device | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) | |
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
class TimestepEmbedding(nn.Module): | |
def __init__(self, dim, freq_embed_dim=256): | |
super().__init__() | |
self.time_embed = SinusPositionEmbedding(freq_embed_dim) | |
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
def forward(self, timestep): # noqa: F821 | |
time_hidden = self.time_embed(timestep) | |
time_hidden = time_hidden.to(timestep.dtype) | |
time = self.time_mlp(time_hidden) # b d | |
return time |