Spaces:
Running
on
Zero
Running
on
Zero
# MIT License | |
# Copyright (c) 2022 OpenAI | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# Copyright (c) [2022] [OpenAI] | |
# Copyright (c) [2025] [Ziyue Jiang] | |
# SPDX-License-Identifier: MIT | |
# This file has been modified by Ziyue Jiang on 2025/03/19 | |
# Original file was released under MIT, with the full license text # available at https://github.com/openai/whisper/blob/v20240930/LICENSE. | |
# This modified file is released under the same license. | |
from contextlib import contextmanager | |
from typing import Dict, Iterable, Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor, nn | |
from torch.nn.functional import scaled_dot_product_attention | |
SDPA_AVAILABLE = True | |
class LayerNorm(nn.LayerNorm): | |
def forward(self, x: Tensor) -> Tensor: | |
return super().forward(x.float()).type(x.dtype) | |
class Linear(nn.Linear): | |
def forward(self, x: Tensor) -> Tensor: | |
return F.linear( | |
x, | |
self.weight.to(x.dtype), | |
None if self.bias is None else self.bias.to(x.dtype), | |
) | |
class Conv1d(nn.Conv1d): | |
def _conv_forward( | |
self, x: Tensor, weight: Tensor, bias: Optional[Tensor] | |
) -> Tensor: | |
return super()._conv_forward( | |
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype) | |
) | |
def sinusoids(length, channels, max_timescale=10000): | |
"""Returns sinusoids for positional embedding""" | |
assert channels % 2 == 0 | |
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) | |
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) | |
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] | |
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) | |
def disable_sdpa(): | |
prev_state = MultiHeadAttention.use_sdpa | |
try: | |
MultiHeadAttention.use_sdpa = False | |
yield | |
finally: | |
MultiHeadAttention.use_sdpa = prev_state | |
class MultiHeadAttention(nn.Module): | |
use_sdpa = True | |
def __init__(self, n_state: int, n_head: int): | |
super().__init__() | |
self.n_head = n_head | |
self.query = Linear(n_state, n_state) | |
self.key = Linear(n_state, n_state, bias=False) | |
self.value = Linear(n_state, n_state) | |
self.out = Linear(n_state, n_state) | |
def forward( | |
self, | |
x: Tensor, | |
xa: Optional[Tensor] = None, | |
mask: Optional[Tensor] = None, | |
kv_cache: Optional[dict] = None, | |
casual: Optional[bool] = None | |
): | |
q = self.query(x) | |
if kv_cache is None or xa is None or self.key not in kv_cache: | |
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; | |
# otherwise, perform key/value projections for self- or cross-attention as usual. | |
k = self.key(x if xa is None else xa) | |
v = self.value(x if xa is None else xa) | |
else: | |
# for cross-attention, calculate keys and values once and reuse in subsequent calls. | |
k = kv_cache[self.key] | |
v = kv_cache[self.value] | |
wv = self.qkv_attention(q, k, v, mask, casual) | |
return self.out(wv) | |
def qkv_attention( | |
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None, casual: Optional[bool] = None | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
n_batch, n_ctx, n_state = q.shape | |
scale = (n_state // self.n_head) ** -0.25 | |
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) | |
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) | |
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) | |
a = scaled_dot_product_attention( | |
q, k, v, is_causal=casual and n_ctx > 1, attn_mask=mask[:, None, None, :] if mask is not None else None | |
) | |
out = a.permute(0, 2, 1, 3).flatten(start_dim=2) | |
return out | |
class ResidualAttentionBlock(nn.Module): | |
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): | |
super().__init__() | |
self.attn = MultiHeadAttention(n_state, n_head) | |
self.attn_ln = LayerNorm(n_state) | |
self.cross_attn = ( | |
MultiHeadAttention(n_state, n_head) if cross_attention else None | |
) | |
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None | |
n_mlp = n_state * 4 | |
self.mlp = nn.Sequential( | |
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state) | |
) | |
self.mlp_ln = LayerNorm(n_state) | |
def forward( | |
self, | |
x: Tensor, | |
xa: Optional[Tensor] = None, | |
mask: Optional[Tensor] = None, | |
kv_cache: Optional[dict] = None, | |
casual: Optional[bool] = None, | |
): | |
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache, casual=casual) | |
if self.cross_attn: | |
# TODO: Cross attention mask | |
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache, casual=False) | |
x = x + self.mlp(self.mlp_ln(x)) | |
return x | |
class AudioEncoder(nn.Module): | |
def __init__( | |
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int | |
): | |
super().__init__() | |
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) | |
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) | |
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) | |
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( | |
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] | |
) | |
self.ln_post = LayerNorm(n_state) | |
def forward(self, x: Tensor, attn_mask: Tensor): | |
""" | |
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) | |
the mel spectrogram of the audio | |
""" | |
x = F.gelu(self.conv1(x)) | |
x = F.gelu(self.conv2(x)) | |
x = x.permute(0, 2, 1) | |
# assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape" | |
x = (x + self.positional_embedding[:x.size(1)]).to(x.dtype) | |
for block in self.blocks: | |
x = block(x, mask=attn_mask, casual=False) | |
x = self.ln_post(x) | |
return x | |
class TextDecoder(nn.Module): | |
def __init__( | |
self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int | |
): | |
super().__init__() | |
self.token_embedding = nn.Embedding(n_vocab, n_state) | |
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state)) | |
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( | |
[ | |
ResidualAttentionBlock(n_state, n_head, cross_attention=True) | |
for _ in range(n_layer) | |
] | |
) | |
self.ln = LayerNorm(n_state) | |
self.out_proj = nn.Linear(n_state, n_vocab) | |
def forward(self, x: Tensor, attn_mask: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): | |
""" | |
x : torch.LongTensor, shape = (batch_size, <= n_ctx) | |
the text tokens | |
xa : torch.Tensor, shape = (batch_size, n_audio_ctx, n_audio_state) | |
the encoded audio features to be attended on | |
""" | |
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 | |
x = ( | |
self.token_embedding(x) | |
+ self.positional_embedding[offset : offset + x.shape[-1]] | |
) | |
x = x.to(xa.dtype) | |
for block in self.blocks: | |
x = block(x, xa, mask=attn_mask, kv_cache=kv_cache, casual=True) | |
x = self.ln(x) | |
# logits = ( | |
# x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1) | |
# ).float() | |
logits = self.out_proj(x) | |
return logits | |
class Whisper(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.n_vocab = 6800 | |
self.n_text_layer = 6 | |
self.n_text_head = 8 | |
self.n_text_ctx = 2048 | |
self.encoder = AudioEncoder( | |
n_mels=80, n_ctx=3000, n_state=512, n_head=8, n_layer=6, | |
) | |
self.decoder = TextDecoder( | |
n_vocab=6800, n_ctx=2048, n_state=512, n_head=8, n_layer=6, | |
) | |
def embed_audio(self, mel: torch.Tensor): | |
return self.encoder(mel, None) | |
def logits(self, tokens, audio_features, kv_cache=None): | |
return self.decoder(tokens, None, audio_features, kv_cache=kv_cache) | |
def forward( | |
self, mel, mel_len, token, token_len | |
) -> Dict[str, torch.Tensor]: | |
attn_mask_enc = self.sequence_mask(mel_len//2, device=mel.device) > 0 | |
attn_mask_dec = self.sequence_mask(token_len, device=mel.device) > 0 | |
return self.decoder(token, attn_mask_dec, self.encoder(mel, attn_mask_enc)) | |
def device(self): | |
return next(self.parameters()).device | |
def install_kv_cache_hooks(self, cache: Optional[dict] = None): | |
""" | |
The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value | |
tensors calculated for the previous positions. This method returns a dictionary that stores | |
all caches, and the necessary hooks for the key and value projection modules that save the | |
intermediate tensors to be reused during later calculations. | |
Returns | |
------- | |
cache : Dict[nn.Module, torch.Tensor] | |
A dictionary object mapping the key/value projection modules to its cache | |
hooks : List[RemovableHandle] | |
List of PyTorch RemovableHandle objects to stop the hooks to be called | |
""" | |
cache = {**cache} if cache is not None else {} | |
hooks = [] | |
def save_to_cache(module, _, output): | |
if module not in cache or output.shape[1] > self.n_text_ctx: | |
# save as-is, for the first token or cross attention | |
cache[module] = output | |
else: | |
cache[module] = torch.cat([cache[module], output], dim=1).detach() | |
return cache[module] | |
def install_hooks(layer: nn.Module): | |
if isinstance(layer, MultiHeadAttention): | |
hooks.append(layer.key.register_forward_hook(save_to_cache)) | |
hooks.append(layer.value.register_forward_hook(save_to_cache)) | |
self.decoder.apply(install_hooks) | |
return cache, hooks | |
def sequence_mask(self, seq_lens, max_len=None, device='cpu'): | |
b = seq_lens.shape[0] | |
if max_len is None: | |
max_len = seq_lens.max() | |
mask = torch.arange(max_len).unsqueeze(0).to(device) # [1, t] | |
mask = mask < (seq_lens.unsqueeze(1)) # [1, t] + [b, 1] = [b, t] | |
mask = mask.float() | |
return mask | |