MegaTTS3 / tts /modules /aligner /whisper_small.py
ZiyueJiang's picture
first commit for huggingface space
593f3bc
raw
history blame
11.8 kB
# MIT License
# Copyright (c) 2022 OpenAI
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2022] [OpenAI]
# Copyright (c) [2025] [Ziyue Jiang]
# SPDX-License-Identifier: MIT
# This file has been modified by Ziyue Jiang on 2025/03/19
# Original file was released under MIT, with the full license text # available at https://github.com/openai/whisper/blob/v20240930/LICENSE.
# This modified file is released under the same license.
from contextlib import contextmanager
from typing import Dict, Iterable, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn.functional import scaled_dot_product_attention
SDPA_AVAILABLE = True
class LayerNorm(nn.LayerNorm):
def forward(self, x: Tensor) -> Tensor:
return super().forward(x.float()).type(x.dtype)
class Linear(nn.Linear):
def forward(self, x: Tensor) -> Tensor:
return F.linear(
x,
self.weight.to(x.dtype),
None if self.bias is None else self.bias.to(x.dtype),
)
class Conv1d(nn.Conv1d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias: Optional[Tensor]
) -> Tensor:
return super()._conv_forward(
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
)
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
@contextmanager
def disable_sdpa():
prev_state = MultiHeadAttention.use_sdpa
try:
MultiHeadAttention.use_sdpa = False
yield
finally:
MultiHeadAttention.use_sdpa = prev_state
class MultiHeadAttention(nn.Module):
use_sdpa = True
def __init__(self, n_state: int, n_head: int):
super().__init__()
self.n_head = n_head
self.query = Linear(n_state, n_state)
self.key = Linear(n_state, n_state, bias=False)
self.value = Linear(n_state, n_state)
self.out = Linear(n_state, n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
casual: Optional[bool] = None
):
q = self.query(x)
if kv_cache is None or xa is None or self.key not in kv_cache:
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
# otherwise, perform key/value projections for self- or cross-attention as usual.
k = self.key(x if xa is None else xa)
v = self.value(x if xa is None else xa)
else:
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
k = kv_cache[self.key]
v = kv_cache[self.value]
wv = self.qkv_attention(q, k, v, mask, casual)
return self.out(wv)
def qkv_attention(
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None, casual: Optional[bool] = None
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
a = scaled_dot_product_attention(
q, k, v, is_causal=casual and n_ctx > 1, attn_mask=mask[:, None, None, :] if mask is not None else None
)
out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
return out
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = (
MultiHeadAttention(n_state, n_head) if cross_attention else None
)
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * 4
self.mlp = nn.Sequential(
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)
)
self.mlp_ln = LayerNorm(n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
casual: Optional[bool] = None,
):
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache, casual=casual)
if self.cross_attn:
# TODO: Cross attention mask
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache, casual=False)
x = x + self.mlp(self.mlp_ln(x))
return x
class AudioEncoder(nn.Module):
def __init__(
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
):
super().__init__()
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
)
self.ln_post = LayerNorm(n_state)
def forward(self, x: Tensor, attn_mask: Tensor):
"""
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
the mel spectrogram of the audio
"""
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = x.permute(0, 2, 1)
# assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
x = (x + self.positional_embedding[:x.size(1)]).to(x.dtype)
for block in self.blocks:
x = block(x, mask=attn_mask, casual=False)
x = self.ln_post(x)
return x
class TextDecoder(nn.Module):
def __init__(
self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
):
super().__init__()
self.token_embedding = nn.Embedding(n_vocab, n_state)
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
[
ResidualAttentionBlock(n_state, n_head, cross_attention=True)
for _ in range(n_layer)
]
)
self.ln = LayerNorm(n_state)
self.out_proj = nn.Linear(n_state, n_vocab)
def forward(self, x: Tensor, attn_mask: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
"""
x : torch.LongTensor, shape = (batch_size, <= n_ctx)
the text tokens
xa : torch.Tensor, shape = (batch_size, n_audio_ctx, n_audio_state)
the encoded audio features to be attended on
"""
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
x = (
self.token_embedding(x)
+ self.positional_embedding[offset : offset + x.shape[-1]]
)
x = x.to(xa.dtype)
for block in self.blocks:
x = block(x, xa, mask=attn_mask, kv_cache=kv_cache, casual=True)
x = self.ln(x)
# logits = (
# x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)
# ).float()
logits = self.out_proj(x)
return logits
class Whisper(nn.Module):
def __init__(self):
super().__init__()
self.n_vocab = 6800
self.n_text_layer = 6
self.n_text_head = 8
self.n_text_ctx = 2048
self.encoder = AudioEncoder(
n_mels=80, n_ctx=3000, n_state=512, n_head=8, n_layer=6,
)
self.decoder = TextDecoder(
n_vocab=6800, n_ctx=2048, n_state=512, n_head=8, n_layer=6,
)
def embed_audio(self, mel: torch.Tensor):
return self.encoder(mel, None)
def logits(self, tokens, audio_features, kv_cache=None):
return self.decoder(tokens, None, audio_features, kv_cache=kv_cache)
def forward(
self, mel, mel_len, token, token_len
) -> Dict[str, torch.Tensor]:
attn_mask_enc = self.sequence_mask(mel_len//2, device=mel.device) > 0
attn_mask_dec = self.sequence_mask(token_len, device=mel.device) > 0
return self.decoder(token, attn_mask_dec, self.encoder(mel, attn_mask_enc))
@property
def device(self):
return next(self.parameters()).device
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
"""
The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value
tensors calculated for the previous positions. This method returns a dictionary that stores
all caches, and the necessary hooks for the key and value projection modules that save the
intermediate tensors to be reused during later calculations.
Returns
-------
cache : Dict[nn.Module, torch.Tensor]
A dictionary object mapping the key/value projection modules to its cache
hooks : List[RemovableHandle]
List of PyTorch RemovableHandle objects to stop the hooks to be called
"""
cache = {**cache} if cache is not None else {}
hooks = []
def save_to_cache(module, _, output):
if module not in cache or output.shape[1] > self.n_text_ctx:
# save as-is, for the first token or cross attention
cache[module] = output
else:
cache[module] = torch.cat([cache[module], output], dim=1).detach()
return cache[module]
def install_hooks(layer: nn.Module):
if isinstance(layer, MultiHeadAttention):
hooks.append(layer.key.register_forward_hook(save_to_cache))
hooks.append(layer.value.register_forward_hook(save_to_cache))
self.decoder.apply(install_hooks)
return cache, hooks
def sequence_mask(self, seq_lens, max_len=None, device='cpu'):
b = seq_lens.shape[0]
if max_len is None:
max_len = seq_lens.max()
mask = torch.arange(max_len).unsqueeze(0).to(device) # [1, t]
mask = mask < (seq_lens.unsqueeze(1)) # [1, t] + [b, 1] = [b, t]
mask = mask.float()
return mask