File size: 12,810 Bytes
593f3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import argparse
import librosa
import numpy as np
import torch

from tn.chinese.normalizer import Normalizer as ZhNormalizer
from tn.english.normalizer import Normalizer as EnNormalizer
from langdetect import detect as classify_language
from pydub import AudioSegment
import pyloudnorm as pyln

from tts.modules.ar_dur.commons.nar_tts_modules import LengthRegulator
from tts.frontend_function import g2p, align, make_dur_prompt, dur_pred, prepare_inputs_for_dit
from tts.utils.audio_utils.io import save_wav, to_wav_bytes, convert_to_wav_bytes, combine_audio_segments
from tts.utils.commons.ckpt_utils import load_ckpt
from tts.utils.commons.hparams import set_hparams, hparams
from tts.utils.text_utils.text_encoder import TokenTextEncoder
from tts.utils.text_utils.split_text import chunk_text_chinese, chunk_text_english
from tts.utils.commons.hparams import hparams, set_hparams


if "TOKENIZERS_PARALLELISM" not in os.environ:
    os.environ["TOKENIZERS_PARALLELISM"] = "false"

def convert_to_wav(wav_path):
    # Check if the file exists
    if not os.path.exists(wav_path):
        print(f"The file '{wav_path}' does not exist.")
        return

    # Check if the file already has a .wav extension
    if not wav_path.endswith(".wav"):
        # Define the output path with a .wav extension
        out_path = os.path.splitext(wav_path)[0] + ".wav"

        # Load the audio file using pydub and convert it to WAV
        audio = AudioSegment.from_file(wav_path)
        audio.export(out_path, format="wav")

        print(f"Converted '{wav_path}' to '{out_path}'")


def cut_wav(wav_path, max_len=28):
    audio = AudioSegment.from_file(wav_path)
    audio = audio[:int(max_len * 1000)]
    audio.export(wav_path, format="wav")

class MegaTTS3DiTInfer():
    def __init__(
            self, 
            device=None,
            ckpt_root='./checkpoints',
            dit_exp_name='diffusion_transformer',
            frontend_exp_name='aligner_lm',
            wavvae_exp_name='wavvae',
            dur_ckpt_path='duration_lm',
            g2p_exp_name='g2p',
            precision=torch.float16,
            **kwargs
        ):
        self.sr = 24000
        self.fm = 8
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.device = device
        self.precision = precision

        # build models
        self.dit_exp_name = os.path.join(ckpt_root, dit_exp_name)
        self.frontend_exp_name = os.path.join(ckpt_root, frontend_exp_name)
        self.wavvae_exp_name = os.path.join(ckpt_root, wavvae_exp_name)
        self.dur_exp_name = os.path.join(ckpt_root, dur_ckpt_path)
        self.g2p_exp_name = os.path.join(ckpt_root, g2p_exp_name)
        self.build_model(self.device)

        # init text normalizer
        self.zh_normalizer = ZhNormalizer(overwrite_cache=False, remove_erhua=False, remove_interjections=False)
        self.en_normalizer = EnNormalizer(overwrite_cache=False)
        # loudness meter
        self.loudness_meter = pyln.Meter(self.sr)

    def build_model(self, device):
        set_hparams(exp_name=self.dit_exp_name, print_hparams=False)

        ''' Load Dict '''
        current_dir = os.path.dirname(os.path.abspath(__file__))
        ling_dict = json.load(open(f"{current_dir}/utils/text_utils/dict.json", encoding='utf-8-sig'))
        self.ling_dict = {k: TokenTextEncoder(None, vocab_list=ling_dict[k], replace_oov='<UNK>') for k in ['phone', 'tone']}
        self.token_encoder = token_encoder = self.ling_dict['phone']
        ph_dict_size = len(token_encoder)

        ''' Load Duration LM '''
        from tts.modules.ar_dur.ar_dur_predictor import ARDurPredictor
        hp_dur_model = self.hp_dur_model = set_hparams(f'{self.dur_exp_name}/config.yaml', global_hparams=False)
        hp_dur_model['frames_multiple'] = hparams['frames_multiple']
        self.dur_model = ARDurPredictor(
            hp_dur_model, hp_dur_model['dur_txt_hs'], hp_dur_model['dur_model_hidden_size'],
            hp_dur_model['dur_model_layers'], ph_dict_size,
            hp_dur_model['dur_code_size'],
            use_rot_embed=hp_dur_model.get('use_rot_embed', False))
        self.length_regulator = LengthRegulator()
        load_ckpt(self.dur_model, f'{self.dur_exp_name}', 'dur_model')
        self.dur_model.eval()
        self.dur_model.to(device)

        ''' Load Diffusion Transformer '''
        from tts.modules.llm_dit.dit import Diffusion
        self.dit = Diffusion()
        load_ckpt(self.dit, f'{self.dit_exp_name}', 'dit', strict=False)
        self.dit.eval()
        self.dit.to(device)
        self.cfg_mask_token_phone = 302 - 1
        self.cfg_mask_token_tone = 32 - 1

        ''' Load Frontend LM '''
        from tts.modules.aligner.whisper_small import Whisper
        self.aligner_lm = Whisper()
        load_ckpt(self.aligner_lm, f'{self.frontend_exp_name}', 'model')
        self.aligner_lm.eval()
        self.aligner_lm.to(device)
        self.kv_cache = None
        self.hooks = None

        ''' Load G2P LM'''
        from transformers import AutoTokenizer, AutoModelForCausalLM
        g2p_tokenizer = AutoTokenizer.from_pretrained(self.g2p_exp_name, padding_side="right")
        g2p_tokenizer.padding_side = "right"
        self.g2p_model = AutoModelForCausalLM.from_pretrained(self.g2p_exp_name).eval().to(device)
        self.g2p_tokenizer = g2p_tokenizer
        self.speech_start_idx = g2p_tokenizer.encode('<Reserved_TTS_0>')[0]

        ''' Wav VAE '''
        self.hp_wavvae = hp_wavvae = set_hparams(f'{self.wavvae_exp_name}/config.yaml', global_hparams=False)
        from tts.modules.wavvae.decoder.wavvae_v3 import WavVAE_V3
        self.wavvae = WavVAE_V3(hparams=hp_wavvae)
        if os.path.exists(f'{self.wavvae_exp_name}/model_only_last.ckpt'):
            load_ckpt(self.wavvae, f'{self.wavvae_exp_name}/model_only_last.ckpt', 'model_gen', strict=True)
            self.has_vae_encoder = True
        else:
            load_ckpt(self.wavvae, f'{self.wavvae_exp_name}/decoder.ckpt', 'model_gen', strict=False)
            self.has_vae_encoder = False
        self.wavvae.eval()
        self.wavvae.to(device)
        self.vae_stride = hp_wavvae.get('vae_stride', 4)
        self.hop_size = hp_wavvae.get('hop_size', 4)
    
    def preprocess(self, audio_bytes, latent_file=None, topk_dur=1, **kwargs):
        wav_bytes = convert_to_wav_bytes(audio_bytes)

        ''' Load wav '''
        wav, _ = librosa.core.load(wav_bytes, sr=self.sr)
        # Pad wav if necessary
        ws = hparams['win_size']
        if len(wav) % ws < ws - 1:
            wav = np.pad(wav, (0, ws - 1 - (len(wav) % ws)), mode='constant', constant_values=0.0).astype(np.float32)
        wav = np.pad(wav, (0, 12000), mode='constant', constant_values=0.0).astype(np.float32)
        self.loudness_prompt = self.loudness_meter.integrated_loudness(wav.astype(float))

        ''' obtain alignments with aligner_lm '''
        ph_ref, tone_ref, mel2ph_ref = align(self, wav)

        with torch.inference_mode():
            ''' Forward WaveVAE to obtain: prompt latent '''
            if self.has_vae_encoder:
                wav = torch.FloatTensor(wav)[None].to(self.device)
                vae_latent = self.wavvae.encode_latent(wav)
                vae_latent = vae_latent[:, :mel2ph_ref.size(1)//4]
            else:
                assert latent_file is not None, "Please provide latent_file in WaveVAE decoder-only mode"
                vae_latent = torch.from_numpy(np.load(latent_file)).to(self.device)
                vae_latent = vae_latent[:, :mel2ph_ref.size(1)//4]
        
            ''' Duration Prompting '''
            self.dur_model.hparams["infer_top_k"] = topk_dur if topk_dur > 1 else None
            incremental_state_dur_prompt, ctx_dur_tokens = make_dur_prompt(self, mel2ph_ref, ph_ref, tone_ref)
            
        return {
            'ph_ref': ph_ref,
            'tone_ref': tone_ref,
            'mel2ph_ref': mel2ph_ref,
            'vae_latent': vae_latent,
            'incremental_state_dur_prompt': incremental_state_dur_prompt,
            'ctx_dur_tokens': ctx_dur_tokens,
        }

    def forward(self, resource_context, input_text, time_step, p_w, t_w, dur_disturb=0.1, dur_alpha=1.0, **kwargs):
        device = self.device

        ph_ref = resource_context['ph_ref'].to(device)
        tone_ref = resource_context['tone_ref'].to(device)
        mel2ph_ref = resource_context['mel2ph_ref'].to(device)
        vae_latent = resource_context['vae_latent'].to(device)
        ctx_dur_tokens = resource_context['ctx_dur_tokens'].to(device)
        incremental_state_dur_prompt = resource_context['incremental_state_dur_prompt']

        with torch.inference_mode():
            ''' Generating '''
            wav_pred_ = []
            language_type = classify_language(input_text)
            if language_type == 'en':
                input_text = self.en_normalizer.normalize(input_text)
                text_segs = chunk_text_english(input_text, max_chars=130)
            else:
                input_text = self.zh_normalizer.normalize(input_text)
                text_segs = chunk_text_chinese(input_text, limit=60)

            for seg_i, text in enumerate(text_segs):
                ''' G2P '''
                ph_pred, tone_pred = g2p(self, text)

                ''' Duration Prediction '''
                mel2ph_pred = dur_pred(self, ctx_dur_tokens, incremental_state_dur_prompt, ph_pred, tone_pred, seg_i, dur_disturb, dur_alpha, is_first=seg_i==0, is_final=seg_i==len(text_segs)-1)
                
                inputs = prepare_inputs_for_dit(self, mel2ph_ref, mel2ph_pred, ph_ref, tone_ref, ph_pred, tone_pred, vae_latent)
                # Speech dit inference
                with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
                    x = self.dit.inference(inputs, timesteps=time_step, seq_cfg_w=[p_w, t_w]).float()
                
                # WavVAE decode
                x[:, :vae_latent.size(1)] = vae_latent
                wav_pred = self.wavvae.decode(x)[0,0].to(torch.float32)
                
                ''' Post-processing '''
                # Trim prompt wav
                wav_pred = wav_pred[vae_latent.size(1)*self.vae_stride*self.hop_size:].cpu().numpy()
                # Norm generated wav to prompt wav's level
                meter = pyln.Meter(self.sr)  # create BS.1770 meter
                loudness_pred = self.loudness_meter.integrated_loudness(wav_pred.astype(float))
                wav_pred = pyln.normalize.loudness(wav_pred, loudness_pred, self.loudness_prompt)
                if np.abs(wav_pred).max() >= 1:
                    wav_pred = wav_pred / np.abs(wav_pred).max() * 0.95

                # Apply hamming window
                wav_pred_.append(wav_pred)

            wav_pred = combine_audio_segments(wav_pred_, sr=self.sr).astype(float)
            return to_wav_bytes(wav_pred, self.sr)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--input_wav', type=str)
    parser.add_argument('--input_text', type=str)
    parser.add_argument('--output_dir', type=str)
    parser.add_argument('--time_step', type=int, default=32, help='Inference steps of Diffusion Transformer')
    parser.add_argument('--p_w', type=float, default=1.6, help='Intelligibility Weight')
    parser.add_argument('--t_w', type=float, default=2.5, help='Similarity Weight')
    args = parser.parse_args()
    wav_path, input_text, out_path, time_step, p_w, t_w = args.input_wav, args.input_text, args.output_dir, args.time_step, args.p_w, args.t_w

    infer_ins = MegaTTS3DiTInfer()

    with open(wav_path, 'rb') as file:
        file_content = file.read()

    print(f"| Start processing {wav_path}+{input_text}")
    resource_context = infer_ins.preprocess(file_content, latent_file=wav_path.replace('.wav', '.npy'))
    wav_bytes = infer_ins.forward(resource_context, input_text, time_step=time_step, p_w=p_w, t_w=t_w)

    print(f"| Saving results to {out_path}/[P]{input_text[:20]}.wav")
    os.makedirs(out_path, exist_ok=True)
    save_wav(wav_bytes, f'{out_path}/[P]{input_text[:20]}.wav')