File size: 10,404 Bytes
593f3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# MIT License

# Copyright (c) 2023 Alexander Tong

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Copyright (c) [2023] [Alexander Tong] 
# Copyright (c) [2025] [Ziyue Jiang] 
# SPDX-License-Identifier: MIT
# This file has been modified by Ziyue Jiang on 2025/03/19
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
# This modified file is released under the same license.

import math
import torch
from typing import Union
from torch.distributions import LogisticNormal


class LogitNormalTrainingTimesteps:
    def __init__(self, T=1000.0, loc=0.0, scale=1.0):
        assert T > 0
        self.T = T
        self.dist = LogisticNormal(loc, scale)

    def sample(self, size, device):
        t = self.dist.sample(size)[..., 0].to(device)
        return t
    

def pad_t_like_x(t, x):
    """Function to reshape the time vector t by the number of dimensions of x.

    Parameters
    ----------
    x : Tensor, shape (bs, *dim)
        represents the source minibatch
    t : FloatTensor, shape (bs)

    Returns
    -------
    t : Tensor, shape (bs, number of x dimensions)

    Example
    -------
    x: Tensor (bs, C, W, H)
    t: Vector (bs)
    pad_t_like_x(t, x): Tensor (bs, 1, 1, 1)
    """
    if isinstance(t, (float, int)):
        return t
    return t.reshape(-1, *([1] * (x.dim() - 1)))


class ConditionalFlowMatcher:
    """Base class for conditional flow matching methods. This class implements the independent
    conditional flow matching methods from [1] and serves as a parent class for all other flow
    matching methods.

    It implements:
    - Drawing data from gaussian probability path N(t * x1 + (1 - t) * x0, sigma) function
    - conditional flow matching ut(x1|x0) = x1 - x0
    - score function $\nabla log p_t(x|x0, x1)$
    """

    def __init__(self, sigma: Union[float, int] = 0.0):
        r"""Initialize the ConditionalFlowMatcher class. It requires the hyper-parameter $\sigma$.

        Parameters
        ----------
        sigma : Union[float, int]
        """
        self.sigma = sigma
        self.time_sampler = LogitNormalTrainingTimesteps()

    def compute_mu_t(self, x0, x1, t):
        """
        Compute the mean of the probability path N(t * x1 + (1 - t) * x0, sigma), see (Eq.14) [1].

        Parameters
        ----------
        x0 : Tensor, shape (bs, *dim)
            represents the source minibatch
        x1 : Tensor, shape (bs, *dim)
            represents the target minibatch
        t : FloatTensor, shape (bs)

        Returns
        -------
        mean mu_t: t * x1 + (1 - t) * x0

        References
        ----------
        [1] Improving and Generalizing Flow-Based Generative Models with minibatch optimal transport, Preprint, Tong et al.
        """
        t = pad_t_like_x(t, x0)
        return t * x1 + (1 - t) * x0

    def compute_sigma_t(self, t):
        """
        Compute the standard deviation of the probability path N(t * x1 + (1 - t) * x0, sigma), see (Eq.14) [1].

        Parameters
        ----------
        t : FloatTensor, shape (bs)

        Returns
        -------
        standard deviation sigma

        References
        ----------
        [1] Improving and Generalizing Flow-Based Generative Models with minibatch optimal transport, Preprint, Tong et al.
        """
        del t
        return self.sigma

    def sample_xt(self, x0, x1, t, epsilon):
        """
        Draw a sample from the probability path N(t * x1 + (1 - t) * x0, sigma), see (Eq.14) [1].

        Parameters
        ----------
        x0 : Tensor, shape (bs, *dim)
            represents the source minibatch
        x1 : Tensor, shape (bs, *dim)
            represents the target minibatch
        t : FloatTensor, shape (bs)
        epsilon : Tensor, shape (bs, *dim)
            noise sample from N(0, 1)

        Returns
        -------
        xt : Tensor, shape (bs, *dim)

        References
        ----------
        [1] Improving and Generalizing Flow-Based Generative Models with minibatch optimal transport, Preprint, Tong et al.
        """
        mu_t = self.compute_mu_t(x0, x1, t)
        sigma_t = self.compute_sigma_t(t)
        sigma_t = pad_t_like_x(sigma_t, x0)
        return mu_t + sigma_t * epsilon

    def compute_conditional_flow(self, x0, x1, t, xt):
        """
        Compute the conditional vector field ut(x1|x0) = x1 - x0, see Eq.(15) [1].

        Parameters
        ----------
        x0 : Tensor, shape (bs, *dim)
            represents the source minibatch
        x1 : Tensor, shape (bs, *dim)
            represents the target minibatch
        t : FloatTensor, shape (bs)
        xt : Tensor, shape (bs, *dim)
            represents the samples drawn from probability path pt

        Returns
        -------
        ut : conditional vector field ut(x1|x0) = x1 - x0

        References
        ----------
        [1] Improving and Generalizing Flow-Based Generative Models with minibatch optimal transport, Preprint, Tong et al.
        """
        del t, xt
        return x1 - x0

    def sample_noise_like(self, x):
        return torch.randn_like(x)

    def sample_location_and_conditional_flow(self, x0, x1, t=None, return_noise=False):
        """
        Compute the sample xt (drawn from N(t * x1 + (1 - t) * x0, sigma))
        and the conditional vector field ut(x1|x0) = x1 - x0, see Eq.(15) [1].

        Parameters
        ----------
        x0 : Tensor, shape (bs, *dim)
            represents the source minibatch
        x1 : Tensor, shape (bs, *dim)
            represents the target minibatch
        (optionally) t : Tensor, shape (bs)
            represents the time levels
            if None, drawn from uniform [0,1]
        return_noise : bool
            return the noise sample epsilon


        Returns
        -------
        t : FloatTensor, shape (bs)
        xt : Tensor, shape (bs, *dim)
            represents the samples drawn from probability path pt
        ut : conditional vector field ut(x1|x0) = x1 - x0
        (optionally) eps: Tensor, shape (bs, *dim) such that xt = mu_t + sigma_t * epsilon

        References
        ----------
        [1] Improving and Generalizing Flow-Based Generative Models with minibatch optimal transport, Preprint, Tong et al.
        """
        if t is None:
            # t = torch.rand(x0.shape[0]).type_as(x0)
            t = self.time_sampler.sample([x0.shape[0]], x0.device).type_as(x0)

        assert len(t) == x0.shape[0], "t has to have batch size dimension"

        eps = self.sample_noise_like(x0)
        xt = self.sample_xt(x0, x1, t, eps)
        ut = self.compute_conditional_flow(x0, x1, t, xt)
        if return_noise:
            return t, xt, ut, eps
        else:
            return t, xt, ut

    def compute_lambda(self, t):
        """Compute the lambda function, see Eq.(23) [3].

        Parameters
        ----------
        t : FloatTensor, shape (bs)

        Returns
        -------
        lambda : score weighting function

        References
        ----------
        [4] Simulation-free Schrodinger bridges via score and flow matching, Preprint, Tong et al.
        """
        sigma_t = self.compute_sigma_t(t)
        return 2 * sigma_t / (self.sigma**2 + 1e-8)


class VariancePreservingConditionalFlowMatcher(ConditionalFlowMatcher):
    """Albergo et al. 2023 trigonometric interpolants class. This class inherits the
    ConditionalFlowMatcher and override the compute_mu_t and compute_conditional_flow functions in
    order to compute [3]'s trigonometric interpolants.

    [3] Stochastic Interpolants: A Unifying Framework for Flows and Diffusions, Albergo et al.
    """

    def compute_mu_t(self, x0, x1, t):
        r"""Compute the mean of the probability path (Eq.5) from [3].

        Parameters
        ----------
        x0 : Tensor, shape (bs, *dim)
            represents the source minibatch
        x1 : Tensor, shape (bs, *dim)
            represents the target minibatch
        t : FloatTensor, shape (bs)

        Returns
        -------
        mean mu_t: cos(pi t/2)x0 + sin(pi t/2)x1

        References
        ----------
        [3] Stochastic Interpolants: A Unifying Framework for Flows and Diffusions, Albergo et al.
        """
        t = pad_t_like_x(t, x0)
        return torch.cos(math.pi / 2 * t) * x0 + torch.sin(math.pi / 2 * t) * x1

    def compute_conditional_flow(self, x0, x1, t, xt):
        r"""Compute the conditional vector field similar to [3].

        ut(x1|x0) = pi/2 (cos(pi*t/2) x1 - sin(pi*t/2) x0),
        see Eq.(21) [3].

        Parameters
        ----------
        x0 : Tensor, shape (bs, *dim)
            represents the source minibatch
        x1 : Tensor, shape (bs, *dim)
            represents the target minibatch
        t : FloatTensor, shape (bs)
        xt : Tensor, shape (bs, *dim)
            represents the samples drawn from probability path pt

        Returns
        -------
        ut : conditional vector field
        ut(x1|x0) = pi/2 (cos(pi*t/2) x1 - sin(\pi*t/2) x0)

        References
        ----------
        [3] Stochastic Interpolants: A Unifying Framework for Flows and Diffusions, Albergo et al.
        """
        del xt
        t = pad_t_like_x(t, x0)
        return math.pi / 2 * (torch.cos(math.pi / 2 * t) * x1 - torch.sin(math.pi / 2 * t) * x0)