Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,568 Bytes
593f3bc 422e557 98dd72d 453a650 593f3bc c90b394 541302b 453a650 593f3bc 453a650 593f3bc c90b394 7d50d0b cefe80e 859b044 25ea338 cefe80e c90b394 cefe80e c90b394 593f3bc f89f703 593f3bc 541302b 593f3bc c90b394 593f3bc 15868b7 593f3bc 453a650 15868b7 593f3bc c90b394 bc7f1e1 95999a9 541302b c90b394 593f3bc 10ecb41 f89f703 10ecb41 593f3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import multiprocessing as mp
import torch
import os
from functools import partial
import gradio as gr
import traceback
from tts.infer_cli import MegaTTS3DiTInfer, convert_to_wav, cut_wav
import spaces
os.system('huggingface-cli download ByteDance/MegaTTS3 --local-dir ./checkpoints --repo-type model')
CUDA_AVAILABLE = torch.cuda.is_available()
infer_pipe = MegaTTS3DiTInfer(device='cuda' if CUDA_AVAILABLE else 'cpu')
@spaces.GPU(duration=60)
def forward_gpu(file_content, wav_path, latent_file, inp_text, time_step, p_w, t_w):
resource_context = infer_pipe.preprocess(file_content, latent_file)
wav_bytes = infer_pipe.forward(resource_context, inp_text, time_step=time_step, p_w=p_w, t_w=t_w)
return wav_bytes
def model_worker(input_queue, output_queue, device_id):
while True:
task = input_queue.get()
inp_audio_path, inp_npy_path, inp_text, infer_timestep, p_w, t_w = task
if inp_npy_path is None or inp_audio_path is None:
output_queue.put(None)
raise gr.Error("Please provide .wav and .npy file")
if (inp_audio_path.split('/')[-1][:-4] != inp_npy_path.split('/')[-1][:-4]):
output_queue.put(None)
raise gr.Error(".npy and .wav mismatch")
if len(inp_text) > 200:
output_queue.put(None)
raise gr.Error("input text is too long")
try:
convert_to_wav(inp_audio_path)
wav_path = os.path.splitext(inp_audio_path)[0] + '.wav'
cut_wav(wav_path, max_len=24)
with open(wav_path, 'rb') as file:
file_content = file.read()
wav_bytes = forward_gpu(file_content, wav_path, inp_npy_path, inp_text, time_step=infer_timestep, p_w=p_w, t_w=t_w)
output_queue.put(wav_bytes)
except Exception as e:
traceback.print_exc()
print(task, str(e))
output_queue.put(None)
raise gr.Error("Generation failed")
def main(inp_audio, inp_npy, inp_text, infer_timestep, p_w, t_w, processes, input_queue, output_queue):
print("Push task to the inp queue |", inp_audio, inp_npy, inp_text, infer_timestep, p_w, t_w)
input_queue.put((inp_audio, inp_npy, inp_text, infer_timestep, p_w, t_w))
res = output_queue.get()
if res is not None:
return res
else:
return None
if __name__ == '__main__':
mp.set_start_method('spawn', force=True)
mp_manager = mp.Manager()
num_workers = 1
devices = [0]
input_queue = mp_manager.Queue()
output_queue = mp_manager.Queue()
processes = []
print("Start open workers")
for i in range(num_workers):
p = mp.Process(target=model_worker, args=(input_queue, output_queue, i % len(devices) if devices is not None else None))
p.start()
processes.append(p)
api_interface = gr.Interface(fn=
partial(main, processes=processes, input_queue=input_queue,
output_queue=output_queue),
inputs=[gr.Audio(type="filepath", label="Upload .wav"), gr.File(type="filepath", label="Upload .npy"), "text",
gr.Number(label="infer timestep", value=32),
gr.Number(label="Intelligibility Weight", value=1.4),
gr.Number(label="Similarity Weight", value=3.0)], outputs=[gr.Audio(label="Synthesized Audio")],
title="MegaTTS3",
examples=[
['./official_test_case/范闲.wav', './official_test_case/范闲.npy', "你好呀,我是范闲,我是庆国十年来风雨画卷的见证者。", 32, 1.4, 3.0],
['./official_test_case/周杰伦1.wav', './official_test_case/周杰伦1.npy', "有的时候嘛,我去台湾开演唱会的时候,会很喜欢来一碗卤肉饭的。", 32, 1.4, 3.0],
['./official_test_case/english_talk_zhou.wav', './official_test_case/english_talk_zhou.npy', "Let us do some exercise and practice more.", 32, 1.4, 3.0],
],
cache_examples=True,
description="Upload a speech clip as a reference for timbre, " +
"upload the pre-extracted latent file, "+
"input the target text, and receive the cloned voice. "+
"Tip: a generation process should be within 120s (check if your input text are too long). Please use the system gently, as excessive load or languages other than English or Chinese may cause crashes and disrupt access for other users.", concurrency_limit=1)
api_interface.launch(server_name='0.0.0.0', server_port=7860, debug=True)
for p in processes:
p.join()
|