Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,036 Bytes
593f3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn
from tts.modules.llm_dit.cfm import ConditionalFlowMatcher
from tts.modules.ar_dur.commons.layers import Embedding
from tts.modules.ar_dur.commons.nar_tts_modules import PosEmb
from tts.modules.ar_dur.commons.rel_transformer import RelTransformerEncoder
from tts.modules.ar_dur.ar_dur_predictor import expand_states
from tts.modules.llm_dit.transformer import Transformer
from tts.modules.llm_dit.time_embedding import TimestepEmbedding
class Diffusion(nn.Module):
def __init__(self):
super().__init__()
# Hparams
# cond dim
self.local_cond_dim = 512
self.ctx_mask_dim = 16
self.in_channels = 32
self.out_channels = 32
# LLM
self.encoder_dim = 1024
self.encoder_n_layers = 24
self.encoder_n_heads = 16
self.max_seq_len = 16384
self.multiple_of = 256
self.ctx_mask_proj = nn.Linear(1, self.ctx_mask_dim)
self.local_cond_project = nn.Linear(
self.out_channels + self.ctx_mask_dim, self.local_cond_dim)
self.encoder = Transformer(self.encoder_n_layers, self.encoder_dim, self.encoder_n_heads, self.max_seq_len)
self.x_prenet = nn.Linear(self.in_channels, self.encoder_dim)
self.prenet = nn.Linear(self.local_cond_dim, self.encoder_dim)
self.postnet = nn.Linear(self.encoder_dim, self.out_channels)
self.flow_matcher = ConditionalFlowMatcher(sigma=0.0)
# The implementation of TimestepEmbedding is a modified version from F5-TTS (https://github.com/SWivid/F5-TTS),
# which is licensed under the MIT License.
self.f5_time_embed = TimestepEmbedding(self.encoder_dim)
# text encoder
self.ph_encoder = RelTransformerEncoder(
302, self.encoder_dim, self.encoder_dim,
self.encoder_dim * 2, 4, 6,
3, 0.0, prenet=True, pre_ln=True)
self.tone_embed = Embedding(32, self.encoder_dim, padding_idx=0)
self.ph_pos_embed = PosEmb(self.encoder_dim)
self.ling_pre_net = torch.nn.Sequential(*[
torch.nn.Conv1d(self.encoder_dim, self.encoder_dim, kernel_size=s * 2, stride=s, padding=s // 2)
for i, s in enumerate([2, 2])
])
def forward(self, inputs, sigmas=None, x_noisy=None):
ctx_mask = inputs['ctx_mask']
ctx_feature = inputs['lat_ctx'] * ctx_mask
""" local conditioning (prompt_latent + spk_embed) """
ctx_mask_emb = self.ctx_mask_proj(ctx_mask)
# ctx_feature = ctx_feature * (1 - inputs["spk_cfg_mask"][:, :, None])
local_cond = torch.cat([ctx_feature, ctx_mask_emb], dim=-1)
local_cond = self.local_cond_project(local_cond)
""" diffusion target latent """
x = inputs['lat']
# Here, x is x1 in CFM
x0 = torch.randn_like(x)
t, xt, ut = self.flow_matcher.sample_location_and_conditional_flow(x0, x)
# define noisy_input and target
t = t.bfloat16()
x_noisy = (xt * (1 - ctx_mask)).bfloat16()
target = ut
# concat condition.
x_ling = self.forward_ling_encoder(inputs["phone"], inputs["tone"])
x_ling = self.ling_pre_net(expand_states(x_ling, inputs['mel2ph']).transpose(1, 2)).transpose(1, 2)
x_noisy = self.x_prenet(x_noisy) + self.prenet(local_cond) + x_ling
encoder_out = self.encoder(x_noisy, self.f5_time_embed(t), attn_mask=inputs["text_mel_mask"], do_checkpoint=False)
pred = self.postnet(encoder_out)
return pred, target
def forward_ling_encoder(self, txt_tokens, tone_tokens):
ph_tokens = txt_tokens
ph_nonpadding = (ph_tokens > 0).float()[:, :, None] # [B, T_phone, 1]
# enc_ph
ph_enc_oembed = self.tone_embed(tone_tokens)
ph_enc_oembed = ph_enc_oembed + self.ph_pos_embed(
torch.arange(0, ph_tokens.shape[1])[None,].to(ph_tokens.device))
ph_enc_oembed = ph_enc_oembed
ph_enc_oembed = ph_enc_oembed * ph_nonpadding
x_ling = self.ph_encoder(ph_tokens, other_embeds=ph_enc_oembed) * ph_nonpadding
return x_ling
def _forward(self, x, local_cond, x_ling, timesteps, ctx_mask, dur=None, seq_cfg_w=[1.0,1.0]):
""" When we use torchdiffeq, we need to include the CFG process inside _forward() """
x = x * (1 - ctx_mask)
x = self.x_prenet(x) + self.prenet(local_cond) + x_ling
pred_v = self.encoder(x, self.f5_time_embed(timesteps), attn_mask=torch.ones((x.size(0), x.size(1)), device=x.device))
pred = self.postnet(pred_v)
""" Perform multi-cond CFG """
cond_spk_txt, cond_txt, uncond = pred.chunk(3)
pred = uncond + seq_cfg_w[0] * (cond_txt - uncond) + seq_cfg_w[1] * (cond_spk_txt - cond_txt)
return pred
@torch.no_grad()
def inference(self, inputs, timesteps=20, seq_cfg_w=[1.0, 1.0], **kwargs):
# txt embedding
x_ling = self.forward_ling_encoder(inputs["phone"], inputs["tone"])
x_ling = self.ling_pre_net(expand_states(x_ling, inputs['dur']).transpose(1, 2)).transpose(1, 2)
# speaker embedding
ctx_feature = inputs['lat_ctx']
ctx_feature[1:, :, :] = 0 # prefix spk cfg
ctx_mask_emb = self.ctx_mask_proj(inputs['ctx_mask'])
# local conditioning.
local_cond = torch.cat([ctx_feature, ctx_mask_emb], dim=-1)
local_cond = self.local_cond_project(local_cond)
''' Euler ODE solver '''
bsz, device, frm_len = (local_cond.size(0), local_cond.device, local_cond.size(1))
# Sway sampling from F5-TTS (https://github.com/SWivid/F5-TTS),
# which is licensed under the MIT License.
sway_sampling_coef = -1.0
t_schedule = torch.linspace(0, 1, timesteps + 1, device=device, dtype=x_ling.dtype)
if sway_sampling_coef is not None:
t_schedule = t_schedule + sway_sampling_coef * (torch.cos(torch.pi / 2 * t_schedule) - 1 + t_schedule)
# AMO sampling implementation for "AMO Sampler: Enhancing Text Rendering with Overshooting" (https://arxiv.org/pdf/2411.19415)
def amo_sampling(z_t, t, t_next, v):
# Upcast to avoid precision issues when computing prev_sample
z_t = z_t.to(torch.float32)
# Constant definition in Algorithm 1
s = t_next
c = 3
# Line 7 in Algorithm 1
o = min(t_next + c * (t_next - t), 1)
pred_z_o = z_t + (o - t) * v
# Line 11 in Algorithm 1
a = s / o
b = ((1 - s) ** 2 - (a * (1 - o)) ** 2) ** 0.5
noise_i = torch.randn(size=z_t.shape, device=z_t.device)
z_t_next = a * pred_z_o + b * noise_i
return z_t_next.to(v.dtype)
x = torch.randn([1, frm_len, self.out_channels], device=device)
for step_index in range(timesteps):
x = x.to(torch.float32)
sigma = t_schedule[step_index].to(x_ling.dtype)
sigma_next = t_schedule[step_index + 1]
model_out = self._forward(torch.cat([x] * bsz), local_cond, x_ling, timesteps=sigma.unsqueeze(0), ctx_mask=inputs['ctx_mask'], dur=inputs['dur'], seq_cfg_w=seq_cfg_w)
x = amo_sampling(x, sigma, sigma_next, model_out)
# Cast sample back to model compatible dtype
x = x.to(model_out.dtype)
return x
|