File size: 11,771 Bytes
593f3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# MIT License

# Copyright (c) 2022 OpenAI

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Copyright (c) [2022] [OpenAI] 
# Copyright (c) [2025] [Ziyue Jiang] 
# SPDX-License-Identifier: MIT
# This file has been modified by Ziyue Jiang on 2025/03/19
# Original file was released under MIT, with the full license text # available at https://github.com/openai/whisper/blob/v20240930/LICENSE.
# This modified file is released under the same license.

from contextlib import contextmanager
from typing import Dict, Iterable, Optional, Tuple

import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn

from torch.nn.functional import scaled_dot_product_attention
SDPA_AVAILABLE = True


class LayerNorm(nn.LayerNorm):
    def forward(self, x: Tensor) -> Tensor:
        return super().forward(x.float()).type(x.dtype)


class Linear(nn.Linear):
    def forward(self, x: Tensor) -> Tensor:
        return F.linear(
            x,
            self.weight.to(x.dtype),
            None if self.bias is None else self.bias.to(x.dtype),
        )


class Conv1d(nn.Conv1d):
    def _conv_forward(
        self, x: Tensor, weight: Tensor, bias: Optional[Tensor]
    ) -> Tensor:
        return super()._conv_forward(
            x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
        )


def sinusoids(length, channels, max_timescale=10000):
    """Returns sinusoids for positional embedding"""
    assert channels % 2 == 0
    log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
    inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
    scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
    return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)


@contextmanager
def disable_sdpa():
    prev_state = MultiHeadAttention.use_sdpa
    try:
        MultiHeadAttention.use_sdpa = False
        yield
    finally:
        MultiHeadAttention.use_sdpa = prev_state


class MultiHeadAttention(nn.Module):
    use_sdpa = True

    def __init__(self, n_state: int, n_head: int):
        super().__init__()
        self.n_head = n_head
        self.query = Linear(n_state, n_state)
        self.key = Linear(n_state, n_state, bias=False)
        self.value = Linear(n_state, n_state)
        self.out = Linear(n_state, n_state)

    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        mask: Optional[Tensor] = None,
        kv_cache: Optional[dict] = None,
        casual: Optional[bool] = None
    ):
        q = self.query(x)

        if kv_cache is None or xa is None or self.key not in kv_cache:
            # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
            # otherwise, perform key/value projections for self- or cross-attention as usual.
            k = self.key(x if xa is None else xa)
            v = self.value(x if xa is None else xa)
        else:
            # for cross-attention, calculate keys and values once and reuse in subsequent calls.
            k = kv_cache[self.key]
            v = kv_cache[self.value]

        wv = self.qkv_attention(q, k, v, mask, casual)
        return self.out(wv)

    def qkv_attention(
        self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None, casual: Optional[bool] = None
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        n_batch, n_ctx, n_state = q.shape
        scale = (n_state // self.n_head) ** -0.25
        q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
        k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
        v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)

        a = scaled_dot_product_attention(
            q, k, v, is_causal=casual and n_ctx > 1, attn_mask=mask[:, None, None, :] if mask is not None else None
        )
        out = a.permute(0, 2, 1, 3).flatten(start_dim=2)
        return out


class ResidualAttentionBlock(nn.Module):
    def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
        super().__init__()

        self.attn = MultiHeadAttention(n_state, n_head)
        self.attn_ln = LayerNorm(n_state)

        self.cross_attn = (
            MultiHeadAttention(n_state, n_head) if cross_attention else None
        )
        self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None

        n_mlp = n_state * 4
        self.mlp = nn.Sequential(
            Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)
        )
        self.mlp_ln = LayerNorm(n_state)

    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        mask: Optional[Tensor] = None,
        kv_cache: Optional[dict] = None,
        casual: Optional[bool] = None,
    ):
        x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache, casual=casual)
        if self.cross_attn:
            # TODO: Cross attention mask
            x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache, casual=False)
        x = x + self.mlp(self.mlp_ln(x))
        return x


class AudioEncoder(nn.Module):
    def __init__(
        self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
    ):
        super().__init__()
        self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
        self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
        self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))

        self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
            [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
        )
        self.ln_post = LayerNorm(n_state)

    def forward(self, x: Tensor, attn_mask: Tensor):
        """
        x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
            the mel spectrogram of the audio
        """
        x = F.gelu(self.conv1(x))
        x = F.gelu(self.conv2(x))
        x = x.permute(0, 2, 1)

        # assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
        x = (x + self.positional_embedding[:x.size(1)]).to(x.dtype)

        for block in self.blocks:
            x = block(x, mask=attn_mask, casual=False)

        x = self.ln_post(x)
        return x


class TextDecoder(nn.Module):
    def __init__(
        self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
    ):
        super().__init__()

        self.token_embedding = nn.Embedding(n_vocab, n_state)
        self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))

        self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
            [
                ResidualAttentionBlock(n_state, n_head, cross_attention=True)
                for _ in range(n_layer)
            ]
        )
        self.ln = LayerNorm(n_state)

        self.out_proj = nn.Linear(n_state, n_vocab)

    def forward(self, x: Tensor, attn_mask: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
        """
        x : torch.LongTensor, shape = (batch_size, <= n_ctx)
            the text tokens
        xa : torch.Tensor, shape = (batch_size, n_audio_ctx, n_audio_state)
            the encoded audio features to be attended on
        """
        offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
        x = (
            self.token_embedding(x)
            + self.positional_embedding[offset : offset + x.shape[-1]]
        )
        x = x.to(xa.dtype)

        for block in self.blocks:
            x = block(x, xa, mask=attn_mask, kv_cache=kv_cache, casual=True)

        x = self.ln(x)
        # logits = (
        #     x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)
        # ).float()
        logits = self.out_proj(x)

        return logits


class Whisper(nn.Module):
    def __init__(self):
        super().__init__()
        self.n_vocab = 6800
        self.n_text_layer = 6
        self.n_text_head = 8
        self.n_text_ctx = 2048

        self.encoder = AudioEncoder(
            n_mels=80, n_ctx=3000, n_state=512, n_head=8, n_layer=6,
        )
        self.decoder = TextDecoder(
            n_vocab=6800, n_ctx=2048, n_state=512, n_head=8, n_layer=6,
        )

    def embed_audio(self, mel: torch.Tensor):
        return self.encoder(mel, None)

    def logits(self, tokens, audio_features, kv_cache=None):
        return self.decoder(tokens, None, audio_features, kv_cache=kv_cache)

    def forward(
        self, mel, mel_len, token, token_len
    ) -> Dict[str, torch.Tensor]:
        attn_mask_enc = self.sequence_mask(mel_len//2, device=mel.device) > 0
        attn_mask_dec = self.sequence_mask(token_len, device=mel.device) > 0
        return self.decoder(token, attn_mask_dec, self.encoder(mel, attn_mask_enc))

    @property
    def device(self):
        return next(self.parameters()).device

    def install_kv_cache_hooks(self, cache: Optional[dict] = None):
        """
        The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value
        tensors calculated for the previous positions. This method returns a dictionary that stores
        all caches, and the necessary hooks for the key and value projection modules that save the
        intermediate tensors to be reused during later calculations.

        Returns
        -------
        cache : Dict[nn.Module, torch.Tensor]
            A dictionary object mapping the key/value projection modules to its cache
        hooks : List[RemovableHandle]
            List of PyTorch RemovableHandle objects to stop the hooks to be called
        """
        cache = {**cache} if cache is not None else {}
        hooks = []

        def save_to_cache(module, _, output):
            if module not in cache or output.shape[1] > self.n_text_ctx:
                # save as-is, for the first token or cross attention
                cache[module] = output
            else:
                cache[module] = torch.cat([cache[module], output], dim=1).detach()
            return cache[module]

        def install_hooks(layer: nn.Module):
            if isinstance(layer, MultiHeadAttention):
                hooks.append(layer.key.register_forward_hook(save_to_cache))
                hooks.append(layer.value.register_forward_hook(save_to_cache))

        self.decoder.apply(install_hooks)
        return cache, hooks
    
    def sequence_mask(self, seq_lens, max_len=None, device='cpu'):
        b = seq_lens.shape[0]
        if max_len is None:
            max_len = seq_lens.max()
        mask = torch.arange(max_len).unsqueeze(0).to(device)  # [1, t]
        mask = mask < (seq_lens.unsqueeze(1))  # [1, t] + [b, 1] = [b, t]
        mask = mask.float()
        return mask