Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,022 Bytes
593f3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F
import whisper
import librosa
from copy import deepcopy
from tts.utils.text_utils.ph_tone_convert import split_ph_timestamp, split_ph
from tts.utils.audio_utils.align import mel2token_to_dur
''' Graphme to phoneme function '''
def g2p(self, text_inp):
# prepare inputs
txt_token = self.g2p_tokenizer('<BOT>' + text_inp + '<BOS>')['input_ids']
input_ids = torch.LongTensor([txt_token+[145+self.speech_start_idx]]).to(self.device)
# model forward
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
outputs = self.g2p_model.generate(input_ids, max_new_tokens=256, do_sample=True, top_k=1, eos_token_id=800+1+self.speech_start_idx)
# process outputs
ph_tokens = outputs[:, len(txt_token):-1]-self.speech_start_idx
ph_pred, tone_pred = split_ph(ph_tokens[0])
ph_pred, tone_pred = ph_pred[None, :].to(self.device), tone_pred[None, :].to(self.device)
return ph_pred, tone_pred
''' Get phoneme2mel align of prompt speech '''
def align(self, wav):
with torch.inference_mode():
whisper_wav = librosa.resample(wav, orig_sr=self.sr, target_sr=16000)
mel = torch.FloatTensor(whisper.log_mel_spectrogram(whisper_wav).T).to(self.device)[None].transpose(1,2)
prompt_max_frame = mel.size(2) // self.fm * self.fm
mel = mel[:, :, :prompt_max_frame]
token = torch.LongTensor([[798]]).to(self.device)
audio_features = self.aligner_lm.embed_audio(mel)
for i in range(768):
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
logits = self.aligner_lm.logits(token, audio_features, None)
token_pred = torch.argmax(F.softmax(logits[:, -1], dim=-1), 1)[None]
token = torch.cat([token, token_pred], dim=1)
if token_pred[0] == 799:
break
alignment_tokens = token
ph_ref, tone_ref, dur_ref, _ = split_ph_timestamp(deepcopy(alignment_tokens)[0, 1:-1])
ph_ref = torch.Tensor(ph_ref)[None].to(self.device)
tone_ref = torch.Tensor(tone_ref)[None].to(self.device)
if dur_ref.sum() < prompt_max_frame:
dur_ref[-1] += prompt_max_frame - dur_ref.sum()
elif dur_ref.sum() > prompt_max_frame:
len_diff = dur_ref.sum() - prompt_max_frame
while True:
for i in range(len(dur_ref)):
dur_ref[i] -= 1
len_diff -= 1
if len_diff == 0:
break
if len_diff == 0:
break
mel2ph_ref = self.length_regulator(dur_ref[None]).to(self.device)
mel2ph_ref = mel2ph_ref[:, :mel2ph_ref.size(1)//self.fm*self.fm]
return ph_ref, tone_ref, mel2ph_ref
''' Duration Prompting '''
def make_dur_prompt(self, mel2ph_ref, ph_ref, tone_ref):
dur_tokens_2d_ = mel2token_to_dur(mel2ph_ref, ph_ref.shape[1]).clamp(
max=self.hp_dur_model['dur_code_size'] - 1) + 1
ctx_dur_tokens = dur_tokens_2d_.clone().flatten(0, 1).to(self.device)
txt_tokens_flat_ = ph_ref.flatten(0, 1)
ctx_dur_tokens = ctx_dur_tokens[txt_tokens_flat_ > 0][None]
last_dur_pos_prompt = ctx_dur_tokens.shape[1]
dur_spk_pos_ids_flat = range(0, last_dur_pos_prompt)
dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device)
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
_, incremental_state_dur_prompt = self.dur_model.infer(
ph_ref, {'tone': tone_ref}, None, None, None,
ctx_vqcodes=ctx_dur_tokens, spk_pos_ids_flat=dur_spk_pos_ids_flat, return_state=True)
return incremental_state_dur_prompt, ctx_dur_tokens
''' Duration Prediction '''
def dur_pred(self, ctx_dur_tokens, incremental_state_dur_prompt, ph_pred, tone_pred, seg_i, dur_disturb, dur_alpha, is_first, is_final):
last_dur_token = ctx_dur_tokens[:, -1:]
last_dur_pos_prompt = ctx_dur_tokens.shape[1]
incremental_state_dur = deepcopy(incremental_state_dur_prompt)
txt_len = ph_pred.shape[1]
dur_spk_pos_ids_flat = range(last_dur_pos_prompt, last_dur_pos_prompt + txt_len)
dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device)
last_dur_pos_prompt = last_dur_pos_prompt + txt_len
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
dur_pred = self.dur_model.infer(
ph_pred, {'tone': tone_pred}, None, None, None,
incremental_state=incremental_state_dur,
first_decoder_inp=last_dur_token,
spk_pos_ids_flat=dur_spk_pos_ids_flat,
)
dur_pred = dur_pred - 1
dur_pred = dur_pred.clamp(0, self.hp_dur_model['dur_code_size'] - 1)
# if is_final:
# dur_pred[:, -1] = dur_pred[:, -1].clamp(64, 128)
# else:
# dur_pred[:, -1] = dur_pred[:, -1].clamp(48, 128)
# if seg_i > 0:
# dur_pred[:, 0] = 0
# ['。', '!', '?', 'sil']
for sil_token in [148, 153, 166, 145]:
dur_pred[ph_pred==sil_token].clamp_min(32)
# [',', ';']
for sil_token in [163, 165]:
dur_pred[ph_pred==sil_token].clamp_min(16)
if not is_final:
# add 0.32ms for crossfade
dur_pred[:, -1] = dur_pred[:, -1] + 32
else:
dur_pred[:, -1] = dur_pred[:, -1].clamp(64, 128)
''' DiT target speech generation '''
dur_disturb_choice = (torch.rand_like(dur_pred.float()) > 0.5).float()
dur_disturb_r = 1 + torch.rand_like(dur_pred.float()) * dur_disturb
dur_pred = dur_pred * dur_disturb_r * dur_disturb_choice + \
dur_pred / dur_disturb_r * (1 - dur_disturb_choice)
dur_pred = torch.round(dur_pred * dur_alpha).clamp(0, 127)
if is_first:
dur_pred[:, 0] = 8
dur_sum = dur_pred.sum()
npad = self.fm - dur_sum % self.fm
if npad < self.fm:
dur_pred[:, -1] += npad
mel2ph_pred = self.length_regulator(dur_pred).to(self.device)
return mel2ph_pred
def prepare_inputs_for_dit(self, mel2ph_ref, mel2ph_pred, ph_ref, tone_ref, ph_pred, tone_pred, vae_latent):
# Prepare duration token
mel2ph_pred = torch.cat((mel2ph_ref, mel2ph_pred+ph_ref.size(1)), dim=1)
mel2ph_pred = mel2ph_pred[:, :mel2ph_pred.size(1)//self.fm*self.fm].repeat(3, 1)
# Prepare phone and tone token
ph_pred = torch.cat((ph_ref, ph_pred), dim=1)
tone_pred = torch.cat((tone_ref, tone_pred), dim=1)
# Disable the English tone (set them to 3)"""
en_tone_idx = ~((tone_pred == 4) | ( (11 <= tone_pred) & (tone_pred <= 15)) | (tone_pred == 0))
tone_pred[en_tone_idx] = 3
# Prepare cfg inputs
ph_seq = torch.cat([ph_pred, ph_pred, torch.full(ph_pred.size(), self.cfg_mask_token_phone, device=self.device)], 0)
tone_seq = torch.cat([tone_pred, tone_pred, torch.full(tone_pred.size(), self.cfg_mask_token_tone, device=self.device)], 0)
target_size = mel2ph_pred.size(1)//self.vae_stride
vae_latent_ = vae_latent.repeat(3, 1, 1)
ctx_mask = torch.ones_like(vae_latent_[:, :, 0:1])
vae_latent_ = F.pad(vae_latent_, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0)
vae_latent_[1:] = 0.0
ctx_mask = F.pad(ctx_mask, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0)
return {
'phone': ph_seq,
'tone': tone_seq,
"lat_ctx": vae_latent_ * ctx_mask,
"ctx_mask": ctx_mask,
"dur": mel2ph_pred,
}
|