File size: 1,060 Bytes
7cb60ed
3b212eb
b3e3f8a
7cb60ed
 
 
 
 
 
a592fa2
 
 
 
7cb60ed
 
 
5d11984
7cb60ed
 
 
 
 
5d11984
7cb60ed
 
 
 
 
 
 
 
b3e3f8a
 
 
 
 
 
7cb60ed
b3e3f8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
import dat
import gradio as gr

# Load the model and tokenizer
model_name = "LocalDoc/mbart_large_qa_azerbaijan"
tokenizer = MBart50Tokenizer.from_pretrained(model_name, src_lang="en_XX", tgt_lang="az_AZ")
model = MBartForConditionalGeneration.from_pretrained(model_name)





def answer_question(context, question):
    # Prepare input text
    input_text = f"context: {context} question: {question}"
    inputs = tokenizer(input_text, return_tensors="pt", max_length=1280000, truncation=False, padding="max_length")
    
    # Generate answer
    outputs = model.generate(
        input_ids=inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        max_length=1280000,
        num_beams=5,
        early_stopping=True
    )
    
    # Decode the answer
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return answer

demo = gr.Interface(
    fn = answer_question,
    inputs = ['context', 'question'],
    outputs = ['text']
)


demo.launch()