Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains.llm import LLMChain
|
2 |
+
from langchain.chains.sequential import SequentialChain
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
# Streamlit Title
|
8 |
+
st.title('AI TRADER')
|
9 |
+
|
10 |
+
# Input for trading details
|
11 |
+
traders_info = st.text_input('Enter the Trading Details from Market Research and Technical Analysis')
|
12 |
+
submit = st.button('SUBMIT')
|
13 |
+
|
14 |
+
# LLM Model Initialization
|
15 |
+
LLM_model = ChatGroq(
|
16 |
+
temperature=0.6,
|
17 |
+
groq_api_key='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'
|
18 |
+
)
|
19 |
+
|
20 |
+
# Prompt Templates and Chains
|
21 |
+
prompt1 = PromptTemplate(
|
22 |
+
input_variables=['input'],
|
23 |
+
template='Based on {input}, which share price will give the highest returns in future options? Summarize in 30 words.'
|
24 |
+
)
|
25 |
+
chain1 = LLMChain(llm=LLM_model, prompt=prompt1, output_key='shares')
|
26 |
+
|
27 |
+
prompt2 = PromptTemplate(
|
28 |
+
input_variables=['shares'],
|
29 |
+
template='What is the current price of {shares}, and what will be the predicted price after five minutes?'
|
30 |
+
)
|
31 |
+
chain2 = LLMChain(llm=LLM_model, prompt=prompt2, output_key='price_prediction')
|
32 |
+
|
33 |
+
prompt3 = PromptTemplate(
|
34 |
+
input_variables=['shares'],
|
35 |
+
template='Name five shares with positive daily growth trends based on the analysis of {shares}.'
|
36 |
+
)
|
37 |
+
chain3 = LLMChain(llm=LLM_model, prompt=prompt3, output_key='positive_growth_shares')
|
38 |
+
|
39 |
+
# Sequential Chain
|
40 |
+
parent_chain = SequentialChain(
|
41 |
+
chains=[chain1, chain2, chain3],
|
42 |
+
input_variables=['input'],
|
43 |
+
output_variables=['shares', 'price_prediction', 'positive_growth_shares']
|
44 |
+
)
|
45 |
+
|
46 |
+
# Streamlit Logic
|
47 |
+
if submit:
|
48 |
+
if traders_info.strip():
|
49 |
+
result = parent_chain({'input': traders_info})
|
50 |
+
st.write('**Suggested Shares:**', result['shares'])
|
51 |
+
st.write('**Price Prediction:**', result['price_prediction'])
|
52 |
+
st.write('**Positive Growth Shares:**', result['positive_growth_shares'])
|
53 |
+
else:
|
54 |
+
st.warning('Please provide trading details to proceed.')
|
55 |
+
|