Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,808 Bytes
600759a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import argparse
import igl
import numpy as np
import os
from scipy.stats import truncnorm
import trimesh
def random_sample_pointcloud(mesh, num = 30000):
points, face_idx = mesh.sample(num, return_index=True)
normals = mesh.face_normals[face_idx]
rng = np.random.default_rng()
index = rng.choice(num, num, replace=False)
return points[index], normals[index]
def sharp_sample_pointcloud(mesh, num=16384):
V = mesh.vertices
N = mesh.face_normals
VN = mesh.vertex_normals
F = mesh.faces
VN2 = np.ones(V.shape[0])
for i in range(3):
dot = np.stack((VN2[F[:,i]], np.sum(VN[F[:,i]] * N, axis=-1)), axis=-1)
VN2[F[:,i]] = np.min(dot, axis=-1)
sharp_mask = VN2<0.985
# collect edge
edge_a = np.concatenate((F[:,0],F[:,1],F[:,2]))
edge_b = np.concatenate((F[:,1],F[:,2],F[:,0]))
sharp_edge = ((sharp_mask[edge_a] * sharp_mask[edge_b]))
edge_a = edge_a[sharp_edge>0]
edge_b = edge_b[sharp_edge>0]
sharp_verts_a = V[edge_a]
sharp_verts_b = V[edge_b]
sharp_verts_an = VN[edge_a]
sharp_verts_bn = VN[edge_b]
weights = np.linalg.norm(sharp_verts_b - sharp_verts_a, axis=-1)
weights /= np.sum(weights)
random_number = np.random.rand(num)
w = np.random.rand(num,1)
index = np.searchsorted(weights.cumsum(), random_number)
samples = w * sharp_verts_a[index] + (1 - w) * sharp_verts_b[index]
normals = w * sharp_verts_an[index] + (1 - w) * sharp_verts_bn[index]
return samples, normals
def sample_sdf(mesh, random_surface, sharp_surface):
n_volume_points = sharp_surface.shape[0] * 2
vol_points = (np.random.rand(n_volume_points, 3) - 0.5) * 2 * 1.05
a, b = -0.25, 0.25
mu = 0
# get near points (add offset on surface points)
offset1 = truncnorm.rvs((a - mu) / 0.005, (b - mu) / 0.005, loc=mu, scale=0.005, size=(len(random_surface), 3))
offset2 = truncnorm.rvs((a - mu) / 0.05, (b - mu) / 0.05, loc=mu, scale=0.05, size=(len(random_surface), 3))
random_near_points = np.concatenate([
random_surface + offset1,
random_surface + offset2
], axis=0)
unit_num = len(sharp_surface) // 6
sharp_near_points = np.concatenate([
sharp_surface[:unit_num] + np.random.normal(scale=0.001, size=(unit_num, 3)),
sharp_surface[unit_num:unit_num*2] + np.random.normal(scale=0.003, size=(unit_num,3)),
sharp_surface[unit_num*2:unit_num*3] + np.random.normal(scale=0.06, size=(unit_num,3)),
sharp_surface[unit_num*3:unit_num*4] + np.random.normal(scale=0.01, size=(unit_num,3)),
sharp_surface[unit_num*4:unit_num*5] + np.random.normal(scale=0.02, size=(unit_num,3)),
sharp_surface[unit_num*5:] + np.random.normal(scale=0.04, size=(len(sharp_surface)-5*unit_num,3))
], axis=0)
np.random.shuffle(random_near_points)
np.random.shuffle(sharp_near_points)
sign_type = igl.SIGNED_DISTANCE_TYPE_FAST_WINDING_NUMBER
try:
vol_sdf, I, C = igl.signed_distance(
vol_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False,
sign_type=sign_type)
except:
vol_sdf, I, C = igl.signed_distance(
vol_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False)
try:
random_near_sdf, I, C = igl.signed_distance(
random_near_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False,
sign_type=sign_type)
except:
random_near_sdf, I, C = igl.signed_distance(
random_near_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False)
try:
sharp_near_sdf, I, C = igl.signed_distance(
sharp_near_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False,
sign_type=sign_type)
except:
sharp_near_sdf, I, C = igl.signed_distance(
sharp_near_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False)
vol_label = -vol_sdf
random_near_label = -random_near_sdf
sharp_near_label = -sharp_near_sdf
data = {
"vol_points": vol_points.astype(np.float16),
"vol_label": vol_label.astype(np.float16),
"random_near_points": random_near_points.astype(np.float16),
"random_near_label": random_near_label.astype(np.float16),
"sharp_near_points": sharp_near_points.astype(np.float16),
"sharp_near_label": sharp_near_label.astype(np.float16)
}
return data
def SampleMesh(V, F):
mesh = trimesh.Trimesh(vertices=V, faces=F)
area = mesh.area
sample_num = 499712//4
random_surface, random_normal = random_sample_pointcloud(mesh, num=sample_num)
random_sharp_surface, sharp_normal = sharp_sample_pointcloud(mesh, num=sample_num)
#save_surface
surface = np.concatenate((random_surface, random_normal), axis = 1).astype(np.float16)
sharp_surface = np.concatenate((random_sharp_surface, sharp_normal), axis=1).astype(np.float16)
surface_data = {
"random_surface": surface,
"sharp_surface": sharp_surface,
}
sdf_data = sample_sdf(mesh, random_surface, random_sharp_surface)
return surface_data, sdf_data
def normalize_to_unit_box(V):
"""
Normalize the vertices V to fit inside a unit bounding box [0,1]^3.
V: (n,3) numpy array of vertex positions.
Returns: normalized V
"""
V_min = V.min(axis=0)
V_max = V.max(axis=0)
scale = (V_max - V_min).max() * 1.01
V_normalized = (V - V_min) / scale
return V_normalized
# Given: V (n x 3 array of vertices), F (m x 3 array of faces)
# Parameters epsilon/grid_res
def Watertight(V, F, epsilon = 2.0/256, grid_res = 256):
# Compute bounding box
min_corner = V.min(axis=0)
max_corner = V.max(axis=0)
padding = 0.05 * (max_corner - min_corner)
min_corner -= padding
max_corner += padding
# Create a uniform grid
x = np.linspace(min_corner[0], max_corner[0], grid_res)
y = np.linspace(min_corner[1], max_corner[1], grid_res)
z = np.linspace(min_corner[2], max_corner[2], grid_res)
X, Y, Z = np.meshgrid(x, y, z, indexing='ij')
grid_points = np.vstack([X.ravel(), Y.ravel(), Z.ravel()]).T
# Compute SDF at grid points using igl.signed_distance with pseudo normals
sdf, _, _ = igl.signed_distance(
grid_points, V, F, sign_type=igl.SIGNED_DISTANCE_TYPE_PSEUDONORMAL
)
# igl.marching_cubes returns (vertices, faces)
mc_verts, mc_faces = igl.marching_cubes(epsilon - np.abs(sdf), grid_points, grid_res, grid_res, grid_res, 0.0)
# mc_verts: (k x 3) array of vertices of the epsilon contour
# mc_faces: (l x 3) array of faces of the epsilon contour
return mc_verts, mc_faces
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process an OBJ file and output surface and SDF data.')
parser.add_argument('--input_obj', type=str, help='Path to the input OBJ file')
parser.add_argument('--output_prefix', type=str, default=None,
help='Base name for output files (default: input OBJ filename without extension)')
args = parser.parse_args()
input_obj = args.input_obj
name = args.output_prefix
V, F = igl.read_triangle_mesh(input_obj)
V = normalize_to_unit_box(V)
mc_verts, mc_faces = Watertight(V, F)
surface_data, sdf_data = SampleMesh(mc_verts, mc_faces)
parent_folder = os.path.dirname(args.output_prefix)
os.makedirs(parent_folder, exist_ok=True)
export_surface = f'{name}_surface.npz'
np.savez(export_surface, **surface_data)
export_sdf = f'{name}_sdf.npz'
np.savez(export_sdf, **sdf_data)
igl.write_obj(f'{name}_watertight.obj', mc_verts, mc_faces)
|