File size: 8,808 Bytes
600759a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import argparse
import igl
import numpy as np
import os
from scipy.stats import truncnorm
import trimesh

def random_sample_pointcloud(mesh, num = 30000):
    points, face_idx = mesh.sample(num, return_index=True)
    normals = mesh.face_normals[face_idx]
    rng = np.random.default_rng()
    index = rng.choice(num, num, replace=False)
    return points[index], normals[index]

def sharp_sample_pointcloud(mesh, num=16384):
    V = mesh.vertices
    N = mesh.face_normals
    VN = mesh.vertex_normals
    F = mesh.faces
    VN2 = np.ones(V.shape[0])
    for i in range(3):
        dot = np.stack((VN2[F[:,i]], np.sum(VN[F[:,i]] * N, axis=-1)), axis=-1)
        VN2[F[:,i]] = np.min(dot, axis=-1)

    sharp_mask = VN2<0.985
    # collect edge
    edge_a = np.concatenate((F[:,0],F[:,1],F[:,2]))
    edge_b = np.concatenate((F[:,1],F[:,2],F[:,0]))
    sharp_edge = ((sharp_mask[edge_a] * sharp_mask[edge_b]))
    edge_a = edge_a[sharp_edge>0]
    edge_b = edge_b[sharp_edge>0]

    sharp_verts_a = V[edge_a]
    sharp_verts_b = V[edge_b]
    sharp_verts_an = VN[edge_a]
    sharp_verts_bn = VN[edge_b]

    weights = np.linalg.norm(sharp_verts_b - sharp_verts_a, axis=-1)
    weights /= np.sum(weights)

    random_number = np.random.rand(num)
    w = np.random.rand(num,1)
    index = np.searchsorted(weights.cumsum(), random_number)
    samples = w * sharp_verts_a[index] + (1 - w) * sharp_verts_b[index]
    normals = w * sharp_verts_an[index] + (1 - w) * sharp_verts_bn[index]
    return samples, normals

def sample_sdf(mesh, random_surface, sharp_surface):
    n_volume_points = sharp_surface.shape[0] * 2
    vol_points = (np.random.rand(n_volume_points, 3) - 0.5) * 2 * 1.05

    a, b = -0.25, 0.25
    mu = 0

    # get near points (add offset on surface points)
    offset1 = truncnorm.rvs((a - mu) / 0.005, (b - mu) / 0.005, loc=mu, scale=0.005, size=(len(random_surface), 3))
    offset2 = truncnorm.rvs((a - mu) / 0.05, (b - mu) / 0.05, loc=mu, scale=0.05,  size=(len(random_surface), 3))
    random_near_points = np.concatenate([
        random_surface + offset1,
        random_surface + offset2
    ], axis=0)

    unit_num = len(sharp_surface) // 6
    sharp_near_points = np.concatenate([
        sharp_surface[:unit_num] + np.random.normal(scale=0.001, size=(unit_num, 3)),
        sharp_surface[unit_num:unit_num*2] + np.random.normal(scale=0.003, size=(unit_num,3)),
        sharp_surface[unit_num*2:unit_num*3] + np.random.normal(scale=0.06, size=(unit_num,3)),
        sharp_surface[unit_num*3:unit_num*4] + np.random.normal(scale=0.01, size=(unit_num,3)),
        sharp_surface[unit_num*4:unit_num*5] + np.random.normal(scale=0.02, size=(unit_num,3)),
        sharp_surface[unit_num*5:] + np.random.normal(scale=0.04, size=(len(sharp_surface)-5*unit_num,3))
    ], axis=0)

    np.random.shuffle(random_near_points)
    np.random.shuffle(sharp_near_points)

    sign_type = igl.SIGNED_DISTANCE_TYPE_FAST_WINDING_NUMBER
    try:
        vol_sdf, I, C = igl.signed_distance(
            vol_points.astype(np.float32), 
            mesh.vertices, mesh.faces, 
            return_normals=False,
            sign_type=sign_type)
    except:
        vol_sdf, I, C = igl.signed_distance(
            vol_points.astype(np.float32), 
            mesh.vertices, mesh.faces, 
            return_normals=False)
    try:
        random_near_sdf, I, C = igl.signed_distance(
            random_near_points.astype(np.float32), 
            mesh.vertices, mesh.faces, 
            return_normals=False,
            sign_type=sign_type)
    except:
        random_near_sdf, I, C = igl.signed_distance(
            random_near_points.astype(np.float32), 
            mesh.vertices, mesh.faces, 
            return_normals=False)
    try:
        sharp_near_sdf, I, C = igl.signed_distance(
            sharp_near_points.astype(np.float32), 
            mesh.vertices, mesh.faces, 
            return_normals=False,
            sign_type=sign_type)
    except:
        sharp_near_sdf, I, C = igl.signed_distance(
            sharp_near_points.astype(np.float32), 
            mesh.vertices, mesh.faces, 
            return_normals=False)
        
    vol_label = -vol_sdf
    random_near_label = -random_near_sdf
    sharp_near_label = -sharp_near_sdf

    data = {
        "vol_points": vol_points.astype(np.float16),
        "vol_label": vol_label.astype(np.float16),
        "random_near_points": random_near_points.astype(np.float16),
        "random_near_label": random_near_label.astype(np.float16),
        "sharp_near_points": sharp_near_points.astype(np.float16),
        "sharp_near_label": sharp_near_label.astype(np.float16)
    }
    return data

def SampleMesh(V, F):
    mesh = trimesh.Trimesh(vertices=V, faces=F)

    area = mesh.area
    sample_num = 499712//4

    random_surface, random_normal = random_sample_pointcloud(mesh, num=sample_num)
    random_sharp_surface, sharp_normal = sharp_sample_pointcloud(mesh, num=sample_num)

    #save_surface
    surface = np.concatenate((random_surface, random_normal), axis = 1).astype(np.float16)
    sharp_surface = np.concatenate((random_sharp_surface, sharp_normal), axis=1).astype(np.float16)

    surface_data = {
        "random_surface": surface,
        "sharp_surface": sharp_surface,
    }

    sdf_data = sample_sdf(mesh, random_surface, random_sharp_surface)
    return surface_data, sdf_data

def normalize_to_unit_box(V):
    """
    Normalize the vertices V to fit inside a unit bounding box [0,1]^3.
    V: (n,3) numpy array of vertex positions.
    Returns: normalized V
    """
    V_min = V.min(axis=0)
    V_max = V.max(axis=0)
    scale = (V_max - V_min).max() * 1.01
    V_normalized = (V - V_min) / scale
    return V_normalized

# Given: V (n x 3 array of vertices), F (m x 3 array of faces)
# Parameters epsilon/grid_res
def Watertight(V, F, epsilon = 2.0/256, grid_res = 256):
    # Compute bounding box
    min_corner = V.min(axis=0)
    max_corner = V.max(axis=0)
    padding = 0.05 * (max_corner - min_corner)
    min_corner -= padding
    max_corner += padding

    # Create a uniform grid
    x = np.linspace(min_corner[0], max_corner[0], grid_res)
    y = np.linspace(min_corner[1], max_corner[1], grid_res)
    z = np.linspace(min_corner[2], max_corner[2], grid_res)
    X, Y, Z = np.meshgrid(x, y, z, indexing='ij')
    grid_points = np.vstack([X.ravel(), Y.ravel(), Z.ravel()]).T

    # Compute SDF at grid points using igl.signed_distance with pseudo normals
    sdf, _, _ = igl.signed_distance(
        grid_points, V, F, sign_type=igl.SIGNED_DISTANCE_TYPE_PSEUDONORMAL
    )
 
    # igl.marching_cubes returns (vertices, faces)
    mc_verts, mc_faces = igl.marching_cubes(epsilon - np.abs(sdf), grid_points, grid_res, grid_res, grid_res, 0.0)

    # mc_verts: (k x 3) array of vertices of the epsilon contour
    # mc_faces: (l x 3) array of faces of the epsilon contour
    return mc_verts, mc_faces

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Process an OBJ file and output surface and SDF data.')
    parser.add_argument('--input_obj', type=str, help='Path to the input OBJ file')
    parser.add_argument('--output_prefix', type=str, default=None, 
        help='Base name for output files (default: input OBJ filename without extension)')
    args = parser.parse_args()

    input_obj = args.input_obj
    name = args.output_prefix

    V, F = igl.read_triangle_mesh(input_obj)
    V = normalize_to_unit_box(V)

    mc_verts, mc_faces = Watertight(V, F)
    surface_data, sdf_data = SampleMesh(mc_verts, mc_faces)

    parent_folder = os.path.dirname(args.output_prefix)
    os.makedirs(parent_folder, exist_ok=True)
    export_surface = f'{name}_surface.npz'
    np.savez(export_surface, **surface_data)
    export_sdf = f'{name}_sdf.npz'
    np.savez(export_sdf, **sdf_data)
    igl.write_obj(f'{name}_watertight.obj', mc_verts, mc_faces)