File size: 25,514 Bytes
600759a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import os

# import ipdb
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from tqdm import tqdm
from torchvision.transforms import v2
from torchvision.utils import make_grid, save_image
from einops import rearrange

from diffusers import (
    DiffusionPipeline,
    EulerAncestralDiscreteScheduler,
    DDPMScheduler,
    UNet2DConditionModel,
    ControlNetModel,
)

from .modules import Dino_v2, UNet2p5DConditionModel
import math


def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


class HunyuanPaint(pl.LightningModule):
    def __init__(
        self,
        stable_diffusion_config,
        control_net_config=None,
        num_view=6,
        view_size=320,
        drop_cond_prob=0.1,
        with_normal_map=None,
        with_position_map=None,
        pbr_settings=["albedo", "mr"],
        **kwargs,
    ):
        """Initializes the HunyuanPaint Lightning Module.

        Args:
            stable_diffusion_config: Configuration for loading the Stable Diffusion pipeline
            control_net_config: Configuration for ControlNet (optional)
            num_view: Number of views to process
            view_size: Size of input views (height/width)
            drop_cond_prob: Probability of dropping conditioning input during training
            with_normal_map: Flag indicating whether normal maps are used
            with_position_map: Flag indicating whether position maps are used
            pbr_settings: List of PBR materials to generate (e.g., albedo, metallic-roughness)
            **kwargs: Additional keyword arguments
        """
        super(HunyuanPaint, self).__init__()

        self.num_view = num_view
        self.view_size = view_size
        self.drop_cond_prob = drop_cond_prob
        self.pbr_settings = pbr_settings

        # init modules
        pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config)
        pipeline.set_pbr_settings(self.pbr_settings)
        pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
            pipeline.scheduler.config, timestep_spacing="trailing"
        )

        self.with_normal_map = with_normal_map
        self.with_position_map = with_position_map

        self.pipeline = pipeline

        self.pipeline.vae.use_slicing = True

        train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config)

        if isinstance(self.pipeline.unet, UNet2DConditionModel):
            self.pipeline.unet = UNet2p5DConditionModel(
                self.pipeline.unet, train_sched, self.pipeline.scheduler, self.pbr_settings
            )
        self.train_scheduler = train_sched  # use ddpm scheduler during training

        self.register_schedule()

        pipeline.set_learned_parameters()

        if control_net_config is not None:
            pipeline.unet = pipeline.unet.bfloat16().requires_grad_(control_net_config.train_unet)
            self.pipeline.add_controlnet(
                ControlNetModel.from_pretrained(control_net_config.pretrained_model_name_or_path),
                conditioning_scale=0.75,
            )

        self.unet = pipeline.unet

        self.pipeline.set_progress_bar_config(disable=True)
        self.pipeline.vae = self.pipeline.vae.bfloat16()
        self.pipeline.text_encoder = self.pipeline.text_encoder.bfloat16()

        if self.unet.use_dino:
            self.dino_v2 = Dino_v2("facebook/dinov2-giant")
            self.dino_v2 = self.dino_v2.bfloat16()

        self.validation_step_outputs = []

    def register_schedule(self):

        self.num_timesteps = self.train_scheduler.config.num_train_timesteps

        betas = self.train_scheduler.betas.detach().cpu()

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)
        alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)

        self.register_buffer("betas", betas.float())
        self.register_buffer("alphas_cumprod", alphas_cumprod.float())
        self.register_buffer("alphas_cumprod_prev", alphas_cumprod_prev.float())

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float())
        self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float())

        self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod).float())
        self.register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1).float())

    def on_fit_start(self):
        device = torch.device(f"cuda:{self.local_rank}")
        self.pipeline.to(device)
        if self.global_rank == 0:
            os.makedirs(os.path.join(self.logdir, "images_val"), exist_ok=True)

    def prepare_batch_data(self, batch):
        """Preprocesses a batch of input data for training/inference.

        Args:
            batch: Raw input batch dictionary

        Returns:
            tuple: Contains:
                - cond_imgs: Primary conditioning images (B, 1, C, H, W)
                - cond_imgs_another: Secondary conditioning images (B, 1, C, H, W)
                - target_imgs: Dictionary of target PBR images resized and clamped
                - images_normal: Preprocessed normal maps (if available)
                - images_position: Preprocessed position maps (if available)
        """

        images_cond = batch["images_cond"].to(self.device)  # (B, M, C, H, W), where M is the number of reference images
        cond_imgs, cond_imgs_another = images_cond[:, 0:1, ...], images_cond[:, 1:2, ...]

        cond_size = self.view_size
        cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1)
        cond_imgs_another = v2.functional.resize(cond_imgs_another, cond_size, interpolation=3, antialias=True).clamp(
            0, 1
        )

        target_imgs = {}
        for pbr_token in self.pbr_settings:
            target_imgs[pbr_token] = batch[f"images_{pbr_token}"].to(self.device)
            target_imgs[pbr_token] = v2.functional.resize(
                target_imgs[pbr_token], self.view_size, interpolation=3, antialias=True
            ).clamp(0, 1)

        images_normal = None
        if "images_normal" in batch:
            images_normal = batch["images_normal"]  # (B, N, C, H, W)
            images_normal = v2.functional.resize(images_normal, self.view_size, interpolation=3, antialias=True).clamp(
                0, 1
            )
            images_normal = [images_normal]

        images_position = None
        if "images_position" in batch:
            images_position = batch["images_position"]  # (B, N, C, H, W)
            images_position = v2.functional.resize(
                images_position, self.view_size, interpolation=3, antialias=True
            ).clamp(0, 1)
            images_position = [images_position]

        return cond_imgs, cond_imgs_another, target_imgs, images_normal, images_position

    @torch.no_grad()
    def forward_text_encoder(self, prompts):
        device = next(self.pipeline.vae.parameters()).device
        text_embeds = self.pipeline.encode_prompt(prompts, device, 1, False)[0]
        return text_embeds

    @torch.no_grad()
    def encode_images(self, images):
        """Encodes input images into latent representations using the VAE.

        Handles both standard input (B, N, C, H, W) and PBR input (B, N_pbrs, N, C, H, W)
        Maintains original batch structure in output latents.

        Args:
            images: Input images tensor

        Returns:
            torch.Tensor: Latent representations with original batch dimensions preserved
        """

        B = images.shape[0]
        image_ndims = images.ndim
        if image_ndims != 5:
            N_pbrs, N = images.shape[1:3]
        images = (
            rearrange(images, "b n c h w -> (b n) c h w")
            if image_ndims == 5
            else rearrange(images, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
        )
        dtype = next(self.pipeline.vae.parameters()).dtype

        images = (images - 0.5) * 2.0
        posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist
        latents = posterior.sample() * self.pipeline.vae.config.scaling_factor

        latents = (
            rearrange(latents, "(b n) c h w -> b n c h w", b=B)
            if image_ndims == 5
            else rearrange(latents, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)
        )

        return latents

    def forward_unet(self, latents, t, **cached_condition):
        """Runs the UNet model to predict noise/latent residuals.

        Args:
            latents: Noisy latent representations (B, C, H, W)
            t: Timestep tensor (B,)
            **cached_condition: Dictionary of conditioning inputs (text embeds, reference images, etc)

        Returns:
            torch.Tensor: UNet output (predicted noise or velocity)
        """

        dtype = next(self.unet.parameters()).dtype
        latents = latents.to(dtype)
        shading_embeds = cached_condition["shading_embeds"]
        pred_noise = self.pipeline.unet(latents, t, encoder_hidden_states=shading_embeds, **cached_condition)
        return pred_noise[0]

    def predict_start_from_z_and_v(self, x_t, t, v):
        """
        Predicts clean image (x0) from noisy latents (x_t) and
        velocity prediction (v) using the v-prediction formula.

        Args:
            x_t: Noisy latents at timestep t
            t: Current timestep
            v: Predicted velocity (v) from UNet

        Returns:
            torch.Tensor: Predicted clean image (x0)
        """

        return (
            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
            - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
        )

    def get_v(self, x, noise, t):
        """Computes the target velocity (v) for v-prediction training.

        Args:
            x: Clean latents (x0)
            noise: Added noise
            t: Current timestep

        Returns:
            torch.Tensor: Target velocity
        """

        return (
            extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
            - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
        )

    def training_step(self, batch, batch_idx):
        """Performs a single training step with both conditioning paths.

        Implements:
        1. Dual-conditioning path training (main ref + secondary ref)
        2. Velocity-prediction with consistency loss
        3. Conditional dropout for robust learning
        4. PBR-specific losses (albedo/metallic-roughness)

        Args:
            batch: Input batch from dataloader
            batch_idx: Index of current batch

        Returns:
            torch.Tensor: Combined loss value
        """

        cond_imgs, cond_imgs_another, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)

        B, N_ref = cond_imgs.shape[:2]
        _, N_gen, _, H, W = target_imgs["albedo"].shape
        N_pbrs = len(self.pbr_settings)
        t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device)
        t = t.unsqueeze(-1).repeat(1, N_pbrs, N_gen)
        t = rearrange(t, "b n_pbrs n -> (b n_pbrs n)")

        all_target_pbrs = []
        for pbr_token in self.pbr_settings:
            all_target_pbrs.append(target_imgs[pbr_token])
        all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
        gen_latents = self.encode_images(all_target_pbrs)  #! B, N_pbrs N C H W
        ref_latents = self.encode_images(cond_imgs)  #! B, M, C, H, W
        ref_latents_another = self.encode_images(cond_imgs_another)  #! B, M, C, H, W

        all_shading_tokens = []
        for token in self.pbr_settings:
            if token in ["albedo", "mr"]:
                all_shading_tokens.append(
                    getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(B, 1, 1)
                )
        shading_embeds = torch.stack(all_shading_tokens, dim=1)

        if self.unet.use_dino:
            dino_hidden_states = self.dino_v2(cond_imgs[:, :1, ...])
            dino_hidden_states_another = self.dino_v2(cond_imgs_another[:, :1, ...])

        gen_latents = rearrange(gen_latents, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
        noise = torch.randn_like(gen_latents).to(self.device)
        latents_noisy = self.train_scheduler.add_noise(gen_latents, noise, t).to(self.device)
        latents_noisy = rearrange(latents_noisy, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)

        cached_condition = {}

        if normal_imgs is not None:
            normal_embeds = self.encode_images(normal_imgs[0])
            cached_condition["embeds_normal"] = normal_embeds  #! B, N, C, H, W

        if position_imgs is not None:
            position_embeds = self.encode_images(position_imgs[0])
            cached_condition["embeds_position"] = position_embeds  #! B, N, C, H, W
            cached_condition["position_maps"] = position_imgs[0]  #! B, N, C, H, W

        for b in range(B):
            prob = np.random.rand()
            if prob < self.drop_cond_prob:
                if "normal_imgs" in cached_condition:
                    cached_condition["embeds_normal"][b, ...] = torch.zeros_like(
                        cached_condition["embeds_normal"][b, ...]
                    )
                if "position_imgs" in cached_condition:
                    cached_condition["embeds_position"][b, ...] = torch.zeros_like(
                        cached_condition["embeds_position"][b, ...]
                    )

            prob = np.random.rand()
            if prob < self.drop_cond_prob:
                if "position_maps" in cached_condition:
                    cached_condition["position_maps"][b, ...] = torch.zeros_like(
                        cached_condition["position_maps"][b, ...]
                    )

            prob = np.random.rand()
            if prob < self.drop_cond_prob:
                dino_hidden_states[b, ...] = torch.zeros_like(dino_hidden_states[b, ...])
            prob = np.random.rand()
            if prob < self.drop_cond_prob:
                dino_hidden_states_another[b, ...] = torch.zeros_like(dino_hidden_states_another[b, ...])

        # MVA & Ref Attention
        prob = np.random.rand()
        cached_condition["mva_scale"] = 1.0
        cached_condition["ref_scale"] = 1.0
        if prob < self.drop_cond_prob:
            cached_condition["mva_scale"] = 0.0
            cached_condition["ref_scale"] = 0.0
        elif prob > 1.0 - self.drop_cond_prob:
            prob = np.random.rand()
            if prob < 0.5:
                cached_condition["mva_scale"] = 0.0
            else:
                cached_condition["ref_scale"] = 0.0
        else:
            pass

        if self.train_scheduler.config.prediction_type == "v_prediction":

            cached_condition["shading_embeds"] = shading_embeds
            cached_condition["ref_latents"] = ref_latents
            cached_condition["dino_hidden_states"] = dino_hidden_states
            v_pred = self.forward_unet(latents_noisy, t, **cached_condition)
            v_pred_albedo, v_pred_mr = torch.split(
                rearrange(
                    v_pred, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
                ),
                1,
                dim=1,
            )
            v_target = self.get_v(gen_latents, noise, t)
            v_target_albedo, v_target_mr = torch.split(
                rearrange(
                    v_target, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
                ),
                1,
                dim=1,
            )

            albedo_loss_1, _ = self.compute_loss(v_pred_albedo, v_target_albedo)
            mr_loss_1, _ = self.compute_loss(v_pred_mr, v_target_mr)

            cached_condition["ref_latents"] = ref_latents_another
            cached_condition["dino_hidden_states"] = dino_hidden_states_another
            v_pred_another = self.forward_unet(latents_noisy, t, **cached_condition)
            v_pred_another_albedo, v_pred_another_mr = torch.split(
                rearrange(
                    v_pred_another,
                    "(b n_pbr n) c h w -> b n_pbr n c h w",
                    n_pbr=len(self.pbr_settings),
                    n=self.num_view,
                ),
                1,
                dim=1,
            )

            albedo_loss_2, _ = self.compute_loss(v_pred_another_albedo, v_target_albedo)
            mr_loss_2, _ = self.compute_loss(v_pred_another_mr, v_target_mr)

            consistency_loss, _ = self.compute_loss(v_pred_another, v_pred)

            albedo_loss = (albedo_loss_1 + albedo_loss_2) * 0.5
            mr_loss = (mr_loss_1 + mr_loss_2) * 0.5

            log_loss_dict = {}
            log_loss_dict.update({f"train/albedo_loss": albedo_loss})
            log_loss_dict.update({f"train/mr_loss": mr_loss})
            log_loss_dict.update({f"train/cons_loss": consistency_loss})

            loss_dict = log_loss_dict

        elif self.train_scheduler.config.prediction_type == "epsilon":
            e_pred = self.forward_unet(latents_noisy, t, **cached_condition)
            loss, loss_dict = self.compute_loss(e_pred, noise)
        else:
            raise f"No {self.train_scheduler.config.prediction_type}"

        # logging
        self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
        self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False)
        lr = self.optimizers().param_groups[0]["lr"]
        self.log("lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)

        return 0.85 * (albedo_loss + mr_loss) + 0.15 * consistency_loss

    def compute_loss(self, noise_pred, noise_gt):
        loss = F.mse_loss(noise_pred, noise_gt)
        prefix = "train"
        loss_dict = {}
        loss_dict.update({f"{prefix}/loss": loss})
        return loss, loss_dict

    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        """Performs validation on a single batch.

        Generates predicted images using:
        1. Reference conditioning images
        2. Optional normal/position maps
        3. Frozen DINO features (if enabled)
        4. Text prompt conditioning

        Compares predictions against ground truth targets and prepares visualization.
        Stores results for epoch-level aggregation.

        Args:
            batch: Input batch from validation dataloader
            batch_idx: Index of current batch
        """
        # [Validation image generation and comparison logic...]
        # Key steps:
        # 1. Preprocess conditioning images to PIL format
        # 2. Set up conditioning inputs (normal maps, position maps, DINO features)
        # 3. Run pipeline inference with fixed prompt ("high quality")
        # 4. Decode latent outputs to image space
        # 5. Arrange predictions and ground truths for visualization

        cond_imgs_tensor, _, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)
        resolution = self.view_size
        image_pils = []
        for i in range(cond_imgs_tensor.shape[0]):
            image_pils.append([])
            for j in range(cond_imgs_tensor.shape[1]):
                image_pils[-1].append(v2.functional.to_pil_image(cond_imgs_tensor[i, j, ...]))

        outputs, gts = [], []
        for idx in range(len(image_pils)):
            cond_imgs = image_pils[idx]

            cached_condition = dict(num_in_batch=self.num_view, N_pbrs=len(self.pbr_settings))
            if normal_imgs is not None:
                cached_condition["images_normal"] = normal_imgs[0][idx, ...].unsqueeze(0)
            if position_imgs is not None:
                cached_condition["images_position"] = position_imgs[0][idx, ...].unsqueeze(0)
            if self.pipeline.unet.use_dino:
                dino_hidden_states = self.dino_v2([cond_imgs][0])
                cached_condition["dino_hidden_states"] = dino_hidden_states

            latent = self.pipeline(
                cond_imgs,
                prompt="high quality",
                num_inference_steps=30,
                output_type="latent",
                height=resolution,
                width=resolution,
                **cached_condition,
            ).images

            image = self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[
                0
            ]  # [-1, 1]
            image = (image * 0.5 + 0.5).clamp(0, 1)

            image = rearrange(
                image, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
            )
            image = torch.cat((torch.ones_like(image[:, :, :1, ...]) * 0.5, image), dim=2)
            image = rearrange(image, "b n_pbr n c h w -> (b n_pbr n) c h w")
            image = rearrange(
                image,
                "(b n_pbr n) c h w -> b c (n_pbr h) (n w)",
                b=1,
                n_pbr=len(self.pbr_settings),
                n=self.num_view + 1,
            )
            outputs.append(image)

        all_target_pbrs = []
        for pbr_token in self.pbr_settings:
            all_target_pbrs.append(target_imgs[pbr_token])
        all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
        all_target_pbrs = torch.cat(
            (cond_imgs_tensor.unsqueeze(1).repeat(1, len(self.pbr_settings), 1, 1, 1, 1), all_target_pbrs), dim=2
        )
        all_target_pbrs = rearrange(all_target_pbrs, "b n_pbrs n c h w -> b c (n_pbrs h) (n w)")
        gts = all_target_pbrs
        outputs = torch.cat(outputs, dim=0).to(self.device)
        images = torch.cat([gts, outputs], dim=-2)
        self.validation_step_outputs.append(images)

    @torch.no_grad()
    def on_validation_epoch_end(self):
        """Aggregates validation results at epoch end.

        Gathers outputs from all GPUs (if distributed training),
        creates a unified visualization grid, and saves to disk.
        Only rank 0 process performs saving.
        """
        # [Result aggregation and visualization...]
        # Key steps:
        # 1. Gather validation outputs from all processes
        # 2. Create image grid combining ground truths and predictions
        # 3. Save visualization with step-numbered filename
        # 4. Clear memory for next validation cycle

        images = torch.cat(self.validation_step_outputs, dim=0)
        all_images = self.all_gather(images)
        all_images = rearrange(all_images, "r b c h w -> (r b) c h w")

        if self.global_rank == 0:
            grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1))
            save_image(grid, os.path.join(self.logdir, "images_val", f"val_{self.global_step:07d}.png"))

        self.validation_step_outputs.clear()  # free memory

    def configure_optimizers(self):
        lr = self.learning_rate
        optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr)

        def lr_lambda(step):
            warm_up_step = 1000
            T_step = 9000
            gamma = 0.9
            min_lr = 0.1 if step >= warm_up_step else 0.0
            max_lr = 1.0
            normalized_step = step % (warm_up_step + T_step)
            current_max_lr = max_lr * gamma ** (step // (warm_up_step + T_step))
            if current_max_lr < min_lr:
                current_max_lr = min_lr
            if normalized_step < warm_up_step:
                lr_step = min_lr + (normalized_step / warm_up_step) * (current_max_lr - min_lr)
            else:
                step_wc_wp = normalized_step - warm_up_step
                ratio = step_wc_wp / T_step
                lr_step = min_lr + 0.5 * (current_max_lr - min_lr) * (1 + math.cos(math.pi * ratio))
            return lr_step

        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)

        lr_scheduler_config = {
            "scheduler": lr_scheduler,
            "interval": "step",
            "frequency": 1,
            "monitor": "val_loss",
            "strict": False,
            "name": None,
        }

        return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}