Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# this is the pdf
|
| 2 |
+
#https://docs.google.com/document/d/1hY5ItC8Mewyk-90Q--CGr50wBbZBjPrkYu4NtiBVre4/edit?usp=sharing
|
| 3 |
+
#Inference takes 6-7 mins per query
|
| 4 |
+
import logging
|
| 5 |
+
import sys
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
| 8 |
+
from llama_index.llms import LlamaCPP
|
| 9 |
+
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
|
| 10 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
| 11 |
+
|
| 12 |
+
# Set up logging
|
| 13 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
| 14 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
| 15 |
+
|
| 16 |
+
def configure_llama_model():
|
| 17 |
+
model_url = 'https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q4_K_M.gguf'
|
| 18 |
+
llm = LlamaCPP(
|
| 19 |
+
model_url=model_url,
|
| 20 |
+
temperature=0.3,
|
| 21 |
+
max_new_tokens=256,
|
| 22 |
+
context_window=3900,
|
| 23 |
+
model_kwargs={"n_gpu_layers": -1},
|
| 24 |
+
messages_to_prompt=messages_to_prompt,
|
| 25 |
+
completion_to_prompt=completion_to_prompt,
|
| 26 |
+
verbose=True,
|
| 27 |
+
)
|
| 28 |
+
return llm
|
| 29 |
+
|
| 30 |
+
def configure_embeddings():
|
| 31 |
+
embed_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 32 |
+
return embed_model
|
| 33 |
+
|
| 34 |
+
def configure_service_context(llm, embed_model):
|
| 35 |
+
return ServiceContext.from_defaults(chunk_size=250, llm=llm, embed_model=embed_model)
|
| 36 |
+
|
| 37 |
+
def initialize_vector_store_index(data_path, service_context):
|
| 38 |
+
documents = SimpleDirectoryReader("./").load_data()
|
| 39 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
| 40 |
+
return index
|
| 41 |
+
|
| 42 |
+
# Configure and initialize components
|
| 43 |
+
llm = configure_llama_model()
|
| 44 |
+
embed_model = configure_embeddings()
|
| 45 |
+
service_context = configure_service_context(llm, embed_model)
|
| 46 |
+
index = initialize_vector_store_index("./", service_context)
|
| 47 |
+
query_engine = index.as_query_engine()
|
| 48 |
+
|
| 49 |
+
# Define a function for Gradio to use
|
| 50 |
+
def get_response(text, username):
|
| 51 |
+
# For simplicity, we are only using the 'text' argument
|
| 52 |
+
response = str(query_engine.query(text))
|
| 53 |
+
return response
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
gr.ChatInterface(get_response).launch(debug=True)
|