import pickle import cv2 import numpy as np import torch from face_detection import FaceAlignment, LandmarksType from mmpose.apis import inference_topdown from mmpose.structures import merge_data_samples from tqdm import tqdm # initialize the face detection model device = "cuda" if torch.cuda.is_available() else "cpu" fa = FaceAlignment(LandmarksType._2D, flip_input=False, device=device) # maker if the bbox is not sufficient coord_placeholder = (0.0, 0.0, 0.0, 0.0) def resize_landmark(landmark, w, h, new_w, new_h): w_ratio = new_w / w h_ratio = new_h / h landmark_norm = landmark / [w, h] landmark_resized = landmark_norm * [new_w, new_h] return landmark_resized def read_imgs(img_list): frames = [] print("reading images...") for img_path in tqdm(img_list): frame = cv2.imread(img_path) frames.append(frame) return frames def get_bbox_range(img_list, model, upperbondrange=0): frames = read_imgs(img_list) batch_size_fa = 1 batches = [frames[i : i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)] coords_list = [] landmarks = [] if upperbondrange != 0: print("get key_landmark and face bounding boxes with the bbox_shift:", upperbondrange) else: print("get key_landmark and face bounding boxes with the default value") average_range_minus = [] average_range_plus = [] for fb in tqdm(batches): results = inference_topdown(model, np.asarray(fb)[0]) results = merge_data_samples(results) keypoints = results.pred_instances.keypoints face_land_mark = keypoints[0][23:91] face_land_mark = face_land_mark.astype(np.int32) # get bounding boxes by face detetion bbox = fa.get_detections_for_batch(np.asarray(fb)) # adjust the bounding box refer to landmark # Add the bounding box to a tuple and append it to the coordinates list for j, f in enumerate(bbox): if f is None: # no face in the image coords_list += [coord_placeholder] continue half_face_coord = face_land_mark[29] # np.mean([face_land_mark[28], face_land_mark[29]], axis=0) range_minus = (face_land_mark[30] - face_land_mark[29])[1] range_plus = (face_land_mark[29] - face_land_mark[28])[1] average_range_minus.append(range_minus) average_range_plus.append(range_plus) if upperbondrange != 0: half_face_coord[1] = upperbondrange + half_face_coord[1] # 手动调整 + 向下(偏29) - 向上(偏28) text_range = f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}" return text_range def get_landmark_and_bbox(img_list, model, upperbondrange=0): frames = read_imgs(img_list) batch_size_fa = 1 batches = [frames[i : i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)] coords_list = [] landmarks = [] if upperbondrange != 0: print("get key_landmark and face bounding boxes with the bbox_shift:", upperbondrange) else: print("get key_landmark and face bounding boxes with the default value") average_range_minus = [] average_range_plus = [] for fb in tqdm(batches): results = inference_topdown(model, np.asarray(fb)[0]) results = merge_data_samples(results) keypoints = results.pred_instances.keypoints face_land_mark = keypoints[0][23:91] face_land_mark = face_land_mark.astype(np.int32) # get bounding boxes by face detetion bbox = fa.get_detections_for_batch(np.asarray(fb)) # adjust the bounding box refer to landmark # Add the bounding box to a tuple and append it to the coordinates list for j, f in enumerate(bbox): if f is None: # no face in the image coords_list += [coord_placeholder] continue half_face_coord = face_land_mark[29] # np.mean([face_land_mark[28], face_land_mark[29]], axis=0) range_minus = (face_land_mark[30] - face_land_mark[29])[1] range_plus = (face_land_mark[29] - face_land_mark[28])[1] average_range_minus.append(range_minus) average_range_plus.append(range_plus) if upperbondrange != 0: half_face_coord[1] = upperbondrange + half_face_coord[1] # 手动调整 + 向下(偏29) - 向上(偏28) half_face_dist = np.max(face_land_mark[:, 1]) - half_face_coord[1] upper_bond = half_face_coord[1] - half_face_dist f_landmark = ( np.min(face_land_mark[:, 0]), int(upper_bond), np.max(face_land_mark[:, 0]), np.max(face_land_mark[:, 1]), ) x1, y1, x2, y2 = f_landmark if y2 - y1 <= 0 or x2 - x1 <= 0 or x1 < 0: # if the landmark bbox is not suitable, reuse the bbox coords_list += [f] w, h = f[2] - f[0], f[3] - f[1] print("error bbox:", f) else: coords_list += [f_landmark] print( "********************************************bbox_shift parameter adjustment**********************************************************" ) print( f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}" ) print( "*************************************************************************************************************************************" ) return coords_list, frames if __name__ == "__main__": img_list = [ "./results/lyria/00000.png", "./results/lyria/00001.png", "./results/lyria/00002.png", "./results/lyria/00003.png", ] crop_coord_path = "./coord_face.pkl" coords_list, full_frames = get_landmark_and_bbox(img_list) with open(crop_coord_path, "wb") as f: pickle.dump(coords_list, f) for bbox, frame in zip(coords_list, full_frames): if bbox == coord_placeholder: continue x1, y1, x2, y2 = bbox crop_frame = frame[y1:y2, x1:x2] print("Cropped shape", crop_frame.shape) # cv2.imwrite(path.join(save_dir, '{}.png'.format(i)),full_frames[i][0][y1:y2, x1:x2]) print(coords_list)