Intelligent-Medical-Guidance-Large-Model
/
server
/digital_human
/modules
/musetalk
/utils
/preprocessing.py
import pickle | |
import cv2 | |
import numpy as np | |
import torch | |
from face_detection import FaceAlignment, LandmarksType | |
from mmpose.apis import inference_topdown | |
from mmpose.structures import merge_data_samples | |
from tqdm import tqdm | |
# initialize the face detection model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
fa = FaceAlignment(LandmarksType._2D, flip_input=False, device=device) | |
# maker if the bbox is not sufficient | |
coord_placeholder = (0.0, 0.0, 0.0, 0.0) | |
def resize_landmark(landmark, w, h, new_w, new_h): | |
w_ratio = new_w / w | |
h_ratio = new_h / h | |
landmark_norm = landmark / [w, h] | |
landmark_resized = landmark_norm * [new_w, new_h] | |
return landmark_resized | |
def read_imgs(img_list): | |
frames = [] | |
print("reading images...") | |
for img_path in tqdm(img_list): | |
frame = cv2.imread(img_path) | |
frames.append(frame) | |
return frames | |
def get_bbox_range(img_list, model, upperbondrange=0): | |
frames = read_imgs(img_list) | |
batch_size_fa = 1 | |
batches = [frames[i : i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)] | |
coords_list = [] | |
landmarks = [] | |
if upperbondrange != 0: | |
print("get key_landmark and face bounding boxes with the bbox_shift:", upperbondrange) | |
else: | |
print("get key_landmark and face bounding boxes with the default value") | |
average_range_minus = [] | |
average_range_plus = [] | |
for fb in tqdm(batches): | |
results = inference_topdown(model, np.asarray(fb)[0]) | |
results = merge_data_samples(results) | |
keypoints = results.pred_instances.keypoints | |
face_land_mark = keypoints[0][23:91] | |
face_land_mark = face_land_mark.astype(np.int32) | |
# get bounding boxes by face detetion | |
bbox = fa.get_detections_for_batch(np.asarray(fb)) | |
# adjust the bounding box refer to landmark | |
# Add the bounding box to a tuple and append it to the coordinates list | |
for j, f in enumerate(bbox): | |
if f is None: # no face in the image | |
coords_list += [coord_placeholder] | |
continue | |
half_face_coord = face_land_mark[29] # np.mean([face_land_mark[28], face_land_mark[29]], axis=0) | |
range_minus = (face_land_mark[30] - face_land_mark[29])[1] | |
range_plus = (face_land_mark[29] - face_land_mark[28])[1] | |
average_range_minus.append(range_minus) | |
average_range_plus.append(range_plus) | |
if upperbondrange != 0: | |
half_face_coord[1] = upperbondrange + half_face_coord[1] # 手动调整 + 向下(偏29) - 向上(偏28) | |
text_range = f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}" | |
return text_range | |
def get_landmark_and_bbox(img_list, model, upperbondrange=0): | |
frames = read_imgs(img_list) | |
batch_size_fa = 1 | |
batches = [frames[i : i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)] | |
coords_list = [] | |
landmarks = [] | |
if upperbondrange != 0: | |
print("get key_landmark and face bounding boxes with the bbox_shift:", upperbondrange) | |
else: | |
print("get key_landmark and face bounding boxes with the default value") | |
average_range_minus = [] | |
average_range_plus = [] | |
for fb in tqdm(batches): | |
results = inference_topdown(model, np.asarray(fb)[0]) | |
results = merge_data_samples(results) | |
keypoints = results.pred_instances.keypoints | |
face_land_mark = keypoints[0][23:91] | |
face_land_mark = face_land_mark.astype(np.int32) | |
# get bounding boxes by face detetion | |
bbox = fa.get_detections_for_batch(np.asarray(fb)) | |
# adjust the bounding box refer to landmark | |
# Add the bounding box to a tuple and append it to the coordinates list | |
for j, f in enumerate(bbox): | |
if f is None: # no face in the image | |
coords_list += [coord_placeholder] | |
continue | |
half_face_coord = face_land_mark[29] # np.mean([face_land_mark[28], face_land_mark[29]], axis=0) | |
range_minus = (face_land_mark[30] - face_land_mark[29])[1] | |
range_plus = (face_land_mark[29] - face_land_mark[28])[1] | |
average_range_minus.append(range_minus) | |
average_range_plus.append(range_plus) | |
if upperbondrange != 0: | |
half_face_coord[1] = upperbondrange + half_face_coord[1] # 手动调整 + 向下(偏29) - 向上(偏28) | |
half_face_dist = np.max(face_land_mark[:, 1]) - half_face_coord[1] | |
upper_bond = half_face_coord[1] - half_face_dist | |
f_landmark = ( | |
np.min(face_land_mark[:, 0]), | |
int(upper_bond), | |
np.max(face_land_mark[:, 0]), | |
np.max(face_land_mark[:, 1]), | |
) | |
x1, y1, x2, y2 = f_landmark | |
if y2 - y1 <= 0 or x2 - x1 <= 0 or x1 < 0: # if the landmark bbox is not suitable, reuse the bbox | |
coords_list += [f] | |
w, h = f[2] - f[0], f[3] - f[1] | |
print("error bbox:", f) | |
else: | |
coords_list += [f_landmark] | |
print( | |
"********************************************bbox_shift parameter adjustment**********************************************************" | |
) | |
print( | |
f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}" | |
) | |
print( | |
"*************************************************************************************************************************************" | |
) | |
return coords_list, frames | |
if __name__ == "__main__": | |
img_list = [ | |
"./results/lyria/00000.png", | |
"./results/lyria/00001.png", | |
"./results/lyria/00002.png", | |
"./results/lyria/00003.png", | |
] | |
crop_coord_path = "./coord_face.pkl" | |
coords_list, full_frames = get_landmark_and_bbox(img_list) | |
with open(crop_coord_path, "wb") as f: | |
pickle.dump(coords_list, f) | |
for bbox, frame in zip(coords_list, full_frames): | |
if bbox == coord_placeholder: | |
continue | |
x1, y1, x2, y2 = bbox | |
crop_frame = frame[y1:y2, x1:x2] | |
print("Cropped shape", crop_frame.shape) | |
# cv2.imwrite(path.join(save_dir, '{}.png'.format(i)),full_frames[i][0][y1:y2, x1:x2]) | |
print(coords_list) | |