FAYO
model
1ef9436
raw
history blame contribute delete
6.64 kB
import pickle
import cv2
import numpy as np
import torch
from face_detection import FaceAlignment, LandmarksType
from mmpose.apis import inference_topdown
from mmpose.structures import merge_data_samples
from tqdm import tqdm
# initialize the face detection model
device = "cuda" if torch.cuda.is_available() else "cpu"
fa = FaceAlignment(LandmarksType._2D, flip_input=False, device=device)
# maker if the bbox is not sufficient
coord_placeholder = (0.0, 0.0, 0.0, 0.0)
def resize_landmark(landmark, w, h, new_w, new_h):
w_ratio = new_w / w
h_ratio = new_h / h
landmark_norm = landmark / [w, h]
landmark_resized = landmark_norm * [new_w, new_h]
return landmark_resized
def read_imgs(img_list):
frames = []
print("reading images...")
for img_path in tqdm(img_list):
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def get_bbox_range(img_list, model, upperbondrange=0):
frames = read_imgs(img_list)
batch_size_fa = 1
batches = [frames[i : i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)]
coords_list = []
landmarks = []
if upperbondrange != 0:
print("get key_landmark and face bounding boxes with the bbox_shift:", upperbondrange)
else:
print("get key_landmark and face bounding boxes with the default value")
average_range_minus = []
average_range_plus = []
for fb in tqdm(batches):
results = inference_topdown(model, np.asarray(fb)[0])
results = merge_data_samples(results)
keypoints = results.pred_instances.keypoints
face_land_mark = keypoints[0][23:91]
face_land_mark = face_land_mark.astype(np.int32)
# get bounding boxes by face detetion
bbox = fa.get_detections_for_batch(np.asarray(fb))
# adjust the bounding box refer to landmark
# Add the bounding box to a tuple and append it to the coordinates list
for j, f in enumerate(bbox):
if f is None: # no face in the image
coords_list += [coord_placeholder]
continue
half_face_coord = face_land_mark[29] # np.mean([face_land_mark[28], face_land_mark[29]], axis=0)
range_minus = (face_land_mark[30] - face_land_mark[29])[1]
range_plus = (face_land_mark[29] - face_land_mark[28])[1]
average_range_minus.append(range_minus)
average_range_plus.append(range_plus)
if upperbondrange != 0:
half_face_coord[1] = upperbondrange + half_face_coord[1] # 手动调整 + 向下(偏29) - 向上(偏28)
text_range = f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}"
return text_range
def get_landmark_and_bbox(img_list, model, upperbondrange=0):
frames = read_imgs(img_list)
batch_size_fa = 1
batches = [frames[i : i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)]
coords_list = []
landmarks = []
if upperbondrange != 0:
print("get key_landmark and face bounding boxes with the bbox_shift:", upperbondrange)
else:
print("get key_landmark and face bounding boxes with the default value")
average_range_minus = []
average_range_plus = []
for fb in tqdm(batches):
results = inference_topdown(model, np.asarray(fb)[0])
results = merge_data_samples(results)
keypoints = results.pred_instances.keypoints
face_land_mark = keypoints[0][23:91]
face_land_mark = face_land_mark.astype(np.int32)
# get bounding boxes by face detetion
bbox = fa.get_detections_for_batch(np.asarray(fb))
# adjust the bounding box refer to landmark
# Add the bounding box to a tuple and append it to the coordinates list
for j, f in enumerate(bbox):
if f is None: # no face in the image
coords_list += [coord_placeholder]
continue
half_face_coord = face_land_mark[29] # np.mean([face_land_mark[28], face_land_mark[29]], axis=0)
range_minus = (face_land_mark[30] - face_land_mark[29])[1]
range_plus = (face_land_mark[29] - face_land_mark[28])[1]
average_range_minus.append(range_minus)
average_range_plus.append(range_plus)
if upperbondrange != 0:
half_face_coord[1] = upperbondrange + half_face_coord[1] # 手动调整 + 向下(偏29) - 向上(偏28)
half_face_dist = np.max(face_land_mark[:, 1]) - half_face_coord[1]
upper_bond = half_face_coord[1] - half_face_dist
f_landmark = (
np.min(face_land_mark[:, 0]),
int(upper_bond),
np.max(face_land_mark[:, 0]),
np.max(face_land_mark[:, 1]),
)
x1, y1, x2, y2 = f_landmark
if y2 - y1 <= 0 or x2 - x1 <= 0 or x1 < 0: # if the landmark bbox is not suitable, reuse the bbox
coords_list += [f]
w, h = f[2] - f[0], f[3] - f[1]
print("error bbox:", f)
else:
coords_list += [f_landmark]
print(
"********************************************bbox_shift parameter adjustment**********************************************************"
)
print(
f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}"
)
print(
"*************************************************************************************************************************************"
)
return coords_list, frames
if __name__ == "__main__":
img_list = [
"./results/lyria/00000.png",
"./results/lyria/00001.png",
"./results/lyria/00002.png",
"./results/lyria/00003.png",
]
crop_coord_path = "./coord_face.pkl"
coords_list, full_frames = get_landmark_and_bbox(img_list)
with open(crop_coord_path, "wb") as f:
pickle.dump(coords_list, f)
for bbox, frame in zip(coords_list, full_frames):
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
crop_frame = frame[y1:y2, x1:x2]
print("Cropped shape", crop_frame.shape)
# cv2.imwrite(path.join(save_dir, '{}.png'.format(i)),full_frames[i][0][y1:y2, x1:x2])
print(coords_list)