Spaces:
Runtime error
Runtime error
| from datetime import datetime | |
| import numpy as np | |
| import pandas as pd | |
| pd.set_option('chained_assignment',None) | |
| pd.set_option('display.max_columns',None) | |
| import os | |
| import pickle as pkl | |
| from Source.Predict.predict import predict | |
| # get team abbreviations | |
| with open('Source/Pickles/team_abbreviation_to_name.pkl', 'rb') as f: | |
| team_abbreviation_to_name = pkl.load(f) | |
| # get this year's odds and results | |
| gbg_and_odds_this_year = pd.read_csv('Source/Data/gbg_and_odds_this_year.csv') | |
| results = pd.read_csv('Source/Data/results.csv') | |
| # make predictions | |
| from tqdm import tqdm | |
| print("Predicting games and getting record") | |
| predictions = {} | |
| for game_id,home,away,season,week,total in tqdm(gbg_and_odds_this_year[['game_id','home_team','away_team','Season','GP','Total Score Close']].values): | |
| if week!=1: | |
| predictions[game_id] = predict(home,away,season,week,total) | |
| # get record and save it | |
| predictions_df = pd.DataFrame(predictions).T | |
| predictions_df['predicted_winner'] = [i['Winner'][0] if type(i['Winner'])==list else None for i in predictions_df[1]] | |
| predictions_df['predicted_winner'] = predictions_df['predicted_winner'].map(team_abbreviation_to_name) | |
| predictions_df['predicted_over_under'] = [i['Over/Under'][0] if type(i['Over/Under'])==list else None for i in predictions_df[2]] | |
| predictions_df = predictions_df.merge(results, left_index=True, right_on='game_id').merge(gbg_and_odds_this_year[['game_id','Total Score Close','home_team','away_team','game_date']]).dropna(subset=['predicted_winner']) | |
| predictions_df['over_under'] = ['Over' if t>tsc else 'Under' if t<tsc else 'Push' for t,tsc in predictions_df[['total','Total Score Close']].values] | |
| predictions_df['game_date'] = pd.to_datetime(predictions_df['game_date']) | |
| predictions_df['winner_correct'] = (predictions_df['predicted_winner']==predictions_df['winner']).astype(int) | |
| predictions_df['winner_incorrect'] = (predictions_df['predicted_winner']!=predictions_df['winner']).astype(int) | |
| predictions_df['over_under_correct'] = (predictions_df['predicted_over_under']==predictions_df['over_under']).astype(int) | |
| predictions_df['over_under_incorrect'] = (predictions_df['predicted_over_under']!=predictions_df['over_under']).astype(int) | |
| winners_correct = predictions_df['winner_correct'].sum() | |
| winners_incorrect = predictions_df['winner_incorrect'].sum() | |
| over_unders_correct = predictions_df['over_under_correct'].sum() | |
| over_unders_incorrect = predictions_df['over_under_incorrect'].sum() | |
| max_date = predictions_df['game_date'].max() | |
| date_obj = datetime.strptime(max_date, "%m/%d/%Y") | |
| latest_game = date_obj.strftime("%A, %m/%d") | |
| record = {"winners_correct":str(winners_correct), | |
| "winners_incorrect":str(winners_incorrect), | |
| "over_unders_correct":str(over_unders_correct), | |
| "over_unders_incorrect":str(over_unders_incorrect), | |
| "latest_game":latest_game} | |
| import json | |
| with open('Source/Data/record.json', 'w') as f: | |
| json.dump(record,f) | |