File size: 6,169 Bytes
bfbcac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import xgboost as xgb
import numpy as np
import pandas as pd
import pickle as pkl
import os
import requests
from bs4 import BeautifulSoup
import warnings
warnings.filterwarnings("ignore")
from datetime import datetime

# set dirs for other files
current_directory = os.path.dirname(os.path.abspath(__file__))
parent_directory = os.path.dirname(current_directory)
data_directory = os.path.join(parent_directory, 'Data')
model_directory = os.path.join(parent_directory, 'Models')
pickle_directory = os.path.join(parent_directory, 'Pickles')

file_path = os.path.join(data_directory, 'gbg_this_year.csv')
gbg = pd.read_csv(file_path, low_memory=False)

file_path = os.path.join(data_directory, 'results.csv')
results = pd.read_csv(file_path, low_memory=False)

# get team abbreviations
file_path = os.path.join(pickle_directory, 'team_name_to_abbreviation.pkl')
with open(file_path, 'rb') as f:
    team_name_to_abbreviation = pkl.load(f)

file_path = os.path.join(pickle_directory, 'team_abbreviation_to_name.pkl')
with open(file_path, 'rb') as f:
    team_abbreviation_to_name = pkl.load(f)

# get schedule
file_path = os.path.join(pickle_directory, 'schedule.pkl')
with open(file_path, 'rb') as f:
    schedule = pkl.load(f)

# get current week
file_path = os.path.join(pickle_directory, 'the_week.pkl')
with open(file_path, 'rb') as f:
    the_week = pkl.load(f)

# load models
# moneyline
model = 'xgboost_ML_no_odds_71.4%'
file_path = os.path.join(model_directory, f'{model}.json')
xgb_ml = xgb.Booster()
xgb_ml.load_model(file_path)

# over/under
model = 'xgboost_OU_no_odds_59.8%'
file_path = os.path.join(model_directory, f'{model}.json')
xgb_ou = xgb.Booster()
xgb_ou.load_model(file_path)


def get_week():
    week = the_week['week']
    year = the_week['year']
    return int(week), int(year)


def get_games(week):
    df = schedule[week-1]
    df['Away Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Away TeamAway Team']]
    df['Home Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Home TeamHome Team']]
    df['Date'] = pd.to_datetime(df['Game TimeGame Time'])
    df['Date'] = df['Date'].dt.strftime('%A %d/%m %I:%M %p')
    df['Date'] = df['Date'].apply(lambda x: f"{x.split()[0]} {int(x.split()[1].split('/')[1])}/{int(x.split()[1].split('/')[0])} {x.split()[2]}".capitalize())
    return df[['Away Team','Home Team','Date']]


def get_one_week(home,away,season,week):
    try:
        max_GP_home = gbg.loc[((gbg['home_team'] == home) | (gbg['away_team'] == home)) & (gbg['GP'] < week)]['GP'].max()
        max_GP_away = gbg.loc[((gbg['home_team'] == away) | (gbg['away_team'] == away)) & (gbg['GP'] < week)]['GP'].max()

        home_df = gbg.loc[((gbg['away_team']==home) | (gbg['home_team']==home)) & (gbg['Season']==season) & (gbg['GP']==max_GP_home)]
        gbg_home_team = home_df['home_team'].item()
        home_df.drop(columns=['game_id','home_team','away_team','Season','game_date'], inplace=True)
        home_df = home_df[[i for i in home_df.columns if '.Away' not in i] if gbg_home_team==home else [i for i in home_df.columns if '.Away' in i]]
        home_df.columns = [i.replace('.Away','') for i in home_df.columns]

        away_df = gbg.loc[((gbg['away_team']==away) | (gbg['home_team']==away)) & (gbg['Season']==season) & (gbg['GP']==max_GP_away)]
        gbg_home_team = away_df['home_team'].item()
        away_df.drop(columns=['game_id','home_team','away_team','Season','game_date'], inplace=True)
        away_df = away_df[[i for i in away_df.columns if '.Away' not in i] if gbg_home_team==away else [i for i in away_df.columns if '.Away' in i]]
        away_df.columns = [i.replace('.Away','') + '.Away' for i in away_df.columns]

        df = home_df.reset_index(drop=True).merge(away_df.reset_index(drop=True), left_index=True, right_index=True)
        return df
    except ValueError:
        return pd.DataFrame()


def predict(home,away,season,week,total):
    global results

    # finish preparing data
    if len(home)>4:
        home_abbrev = team_name_to_abbreviation[home]
    else:
        home_abbrev = home

    if len(away)>4:
        away_abbrev = team_name_to_abbreviation[away]
    else:
        away_abbrev = away

    data = get_one_week(home_abbrev,away_abbrev,season,week)
    data['Total Score Close'] = total
    matrix = xgb.DMatrix(data.astype(float).values)

    # create game id 
    if week < 10:
        game_id = str(season) + '_0' + str(int(week)) + '_' + away_abbrev + '_' + home_abbrev
    else:
        game_id = str(season) + '_' + str(int(week)) + '_' + away_abbrev + '_' + home_abbrev

    try:
        moneyline_result = results.loc[results['game_id']==game_id, 'winner'].item()
    except:
        moneyline_result = 'N/A'

    try:
        ml_predicted_proba = xgb_ml.predict(matrix)[0][1]
        winner_proba = max([ml_predicted_proba, 1-ml_predicted_proba]).item()
        moneyline = {'Winner': [home if ml_predicted_proba>0.5 else away if ml_predicted_proba<0.5 else 'Toss-Up'],
                     'Probabilities':[winner_proba],
                     'Result': moneyline_result}
    except:
        moneyline = {'Winner': 'NA',
                     'Probabilities':['N/A'],
                     'Result': moneyline_result}
    
    try:
        result = results.loc[results['game_id']==game_id, 'total'].item()
        over_under_result = 'Over' if float(result)>float(total) else 'Push' if float(result)==float(total) else 'Under'

    except:
        over_under_result = 'N/A'
    
    try:
        ou_predicted_proba = xgb_ou.predict(matrix)[0][1]
        ou_proba = max([ou_predicted_proba, 1-ou_predicted_proba]).item()

        over_under = {'Over/Under': ['Over' if ou_predicted_proba>0.5 else 'Under'],
                      'Probability': [ou_proba],
                      'Result': over_under_result}
    except:
        over_under = {'Over/Under': 'N/A',
                      'Probability': ['N/A'],
                      'Result': over_under_result}
    
    return game_id, moneyline, over_under