Spaces:
Running
Running
File size: 5,075 Bytes
3231b63 1ab47cd 3231b63 7727a49 3231b63 7727a49 3231b63 7727a49 3231b63 7727a49 3231b63 7727a49 3231b63 7727a49 3231b63 f5ddd11 c1a1d81 3231b63 7727a49 3231b63 2b36ba0 3231b63 2b36ba0 3231b63 0f37677 3231b63 7727a49 a00ecaf 7727a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import xgboost as xgb
import numpy as np
import pandas as pd
import pickle as pkl
import os
import requests
from bs4 import BeautifulSoup
# set dirs for other files
current_directory = os.path.dirname(os.path.abspath(__file__))
parent_directory = os.path.dirname(current_directory)
data_directory = os.path.join(parent_directory, 'Data')
model_directory = os.path.join(parent_directory, 'Models')
pickle_directory = os.path.join(parent_directory, 'Pickles')
file_path = os.path.join(data_directory, 'gbg_this_year.csv')
gbg = pd.read_csv(file_path, low_memory=False)
# get team abbreviations
file_path = os.path.join(pickle_directory, 'team_name_to_abbreviation.pkl')
with open(file_path, 'rb') as f:
team_name_to_abbreviation = pkl.load(f)
file_path = os.path.join(pickle_directory, 'team_abbreviation_to_name.pkl')
with open(file_path, 'rb') as f:
team_abbreviation_to_name = pkl.load(f)
def get_week():
headers = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'en-US,en;q=0.9',
'Cache-Control': 'max-age=0',
'Connection': 'keep-alive',
'Dnt': '1',
'Upgrade-Insecure-Requests': '1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36'
}
url = 'https://www.nfl.com/schedules/'
resp = requests.get(url,headers=headers)
soup = BeautifulSoup(resp.text, 'html.parser')
h2_tags = soup.find_all('h2')
year = h2_tags[0].getText().split(' ')[0]
week = h2_tags[0].getText().split(' ')[-1]
return int(week), int(year)
def get_games():
# pull from NBC
url = 'https://www.nbcsports.com/nfl/schedule'
df = pd.read_html(url)[0]
df['Away Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Away TeamAway Team']]
df['Home Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Home TeamHome Team']]
df['Date'] = pd.to_datetime(df['Game TimeGame Time'])
df['Date'] = df['Date'].dt.strftime('%A %d/%m %I:%M %p')
df['Date'] = df['Date'].apply(lambda x: f"{x.split()[0]} {int(x.split()[1].split('/')[1])}/{int(x.split()[1].split('/')[0])} {x.split()[2]}".capitalize())
return df[['Away Team','Home Team','Date']]
def get_one_week(home,away,season,week):
try:
home_df = gbg.loc[((gbg['away_team']==home) | (gbg['home_team']==home)) & (gbg['Season']==season) & (gbg['GP']==week-1)]
home_df = home_df[[i for i in home_df.columns if '.Away' not in i] if home_df['home_team'].item()==home else [i for i in home_df.columns if '.Away' in i]]
home_df.columns = [i.replace('.Away','') for i in home_df.columns]
away_df = gbg.loc[((gbg['away_team']==away) | (gbg['home_team']==away)) & (gbg['Season']==season) & (gbg['GP']==week-1)]
away_df = away_df[[i for i in away_df.columns if '.Away' not in i] if away_df['home_team'].item()==away else [i for i in away_df.columns if '.Away' in i]]
away_df.columns = [i.replace('.Away','') + '.Away' for i in away_df.columns]
drop_columns = ['game_id', 'Season', 'home_team', 'away_team', 'game_date']
df = home_df.merge(away_df, left_on='GP', right_on='GP.Away').drop(columns=drop_columns)
return df
except ValueError:
return pd.DataFrame()
def predict(home,away,season,week,total):
# finish preparing data
home_abbrev = team_name_to_abbreviation[home]
away_abbrev = team_name_to_abbreviation[away]
data = get_one_week(home_abbrev,away_abbrev,season,week)
data['Total Score Close'] = total
matrix = xgb.DMatrix(data.astype(float).values)
# moneyline
model = 'xgboost_ML_no_odds_69.8%'
file_path = os.path.join(model_directory, f'{model}.json')
xgb_ml = xgb.Booster()
xgb_ml.load_model(file_path)
try:
ml_predicted_proba = xgb_ml.predict(matrix)[0][1]
print(xgb_ml.predict(matrix))
winner_proba = max([ml_predicted_proba, 1-ml_predicted_proba]).item()
moneyline = {'Winner': [home if ml_predicted_proba>0.6 else away if ml_predicted_proba<0.4 else 'Toss-Up'],
'Probabilities':[winner_proba]}
except:
moneyline = {'Winner': 'NA',
'Probabilities':['N/A']}
# over/under
model = 'xgboost_OU_no_odds_60.8%'
file_path = os.path.join(model_directory, f'{model}.json')
xgb_ou = xgb.Booster()
xgb_ou.load_model(file_path)
try:
ou_predicted_proba = xgb_ou.predict(matrix)[0][1]
ou_proba = max([ou_predicted_proba, 1-ou_predicted_proba]).item()
over_under = {'Over/Under': ['Over' if ou_predicted_proba>0.5 else 'Under'],
'Probability': [ou_proba]}
except:
over_under = {'Over/Under': 'N/A',
'Probability': ['N/A']}
# create game id to save predictions
game_id = str(season) + '_' + str(week) + '_' + away_abbrev + '_' + home_abbrev
return game_id, moneyline, over_under
|