File size: 5,832 Bytes
3231b63
 
 
 
 
 
 
 
1ab47cd
3231b63
 
 
 
 
 
7727a49
 
3231b63
fc2b782
 
 
3231b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7727a49
 
 
 
 
3231b63
7727a49
 
 
3231b63
7727a49
 
 
 
 
3231b63
 
 
 
fc2b782
 
 
 
 
 
 
 
 
 
7727a49
 
 
3231b63
fc2b782
 
 
3231b63
fc2b782
3231b63
 
 
fc2b782
 
 
 
 
 
3231b63
 
c1a1d81
fc2b782
 
 
3231b63
 
fc2b782
 
3231b63
 
7727a49
3231b63
 
 
fc2b782
 
 
 
 
 
 
3231b63
2b36ba0
 
fc2b782
3231b63
fc2b782
 
3231b63
 
fc2b782
 
3231b63
fc2b782
7727a49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import xgboost as xgb
import numpy as np
import pandas as pd
import pickle as pkl
import os
import requests
from bs4 import BeautifulSoup

# set dirs for other files
current_directory = os.path.dirname(os.path.abspath(__file__))
parent_directory = os.path.dirname(current_directory)
data_directory = os.path.join(parent_directory, 'Data')
model_directory = os.path.join(parent_directory, 'Models')
pickle_directory = os.path.join(parent_directory, 'Pickles')

file_path = os.path.join(data_directory, 'gbg_this_year.csv')
gbg = pd.read_csv(file_path, low_memory=False)

file_path = os.path.join(data_directory, 'results.csv')
results = pd.read_csv(file_path, low_memory=False)

# get team abbreviations
file_path = os.path.join(pickle_directory, 'team_name_to_abbreviation.pkl')
with open(file_path, 'rb') as f:
    team_name_to_abbreviation = pkl.load(f)

file_path = os.path.join(pickle_directory, 'team_abbreviation_to_name.pkl')
with open(file_path, 'rb') as f:
    team_abbreviation_to_name = pkl.load(f)

def get_week():
    headers = {
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
    'Accept-Encoding': 'gzip, deflate',
    'Accept-Language': 'en-US,en;q=0.9',
    'Cache-Control': 'max-age=0',
    'Connection': 'keep-alive',
    'Dnt': '1',
    'Upgrade-Insecure-Requests': '1',
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36'
    }
    url = 'https://www.nfl.com/schedules/'
    resp = requests.get(url,headers=headers)
    soup = BeautifulSoup(resp.text, 'html.parser')
    h2_tags = soup.find_all('h2')
    year = h2_tags[0].getText().split(' ')[0]
    week = h2_tags[0].getText().split(' ')[-1]
    return int(week), int(year)


def get_games():
    # pull from NBC
    url = 'https://www.nbcsports.com/nfl/schedule'
    df = pd.read_html(url)[0]
    df['Away Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Away TeamAway Team']]
    df['Home Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Home TeamHome Team']]
    df['Date'] = pd.to_datetime(df['Game TimeGame Time'])
    df['Date'] = df['Date'].dt.strftime('%A %d/%m %I:%M %p')
    df['Date'] = df['Date'].apply(lambda x: f"{x.split()[0]} {int(x.split()[1].split('/')[1])}/{int(x.split()[1].split('/')[0])} {x.split()[2]}".capitalize())

    return df[['Away Team','Home Team','Date']]


def get_one_week(home,away,season,week):
    try:
        home_df = gbg.loc[((gbg['away_team']==home) | (gbg['home_team']==home)) & (gbg['Season']==season) & (gbg['GP']==week-1)]
        home_df = home_df[[i for i in home_df.columns if '.Away' not in i] if home_df['home_team'].item()==home else [i for i in home_df.columns if '.Away' in i]]
        home_df.columns = [i.replace('.Away','') for i in home_df.columns]

        away_df = gbg.loc[((gbg['away_team']==away) | (gbg['home_team']==away)) & (gbg['Season']==season) & (gbg['GP']==week-1)]
        away_df = away_df[[i for i in away_df.columns if '.Away' not in i] if away_df['home_team'].item()==away else [i for i in away_df.columns if '.Away' in i]]
        away_df.columns = [i.replace('.Away','') + '.Away' for i in away_df.columns]

        drop_columns = ['game_id', 'Season', 'home_team', 'away_team', 'game_date']
        df = home_df.merge(away_df, left_on='GP', right_on='GP.Away').drop(columns=drop_columns)
        return df
    except ValueError:
        return pd.DataFrame()


def predict(home,away,season,week,total):
    # finish preparing data
    if len(home)>4:
        home_abbrev = team_name_to_abbreviation[home]
    else:
        home_abbrev = home

    if len(away)>4:
        away_abbrev = team_name_to_abbreviation[away]
    else:
        away_abbrev = away

    data = get_one_week(home_abbrev,away_abbrev,season,week)
    data['Total Score Close'] = total
    matrix = xgb.DMatrix(data.astype(float).values)

    # create game id 
    game_id = str(season) + '_0' + str(week) + '_' + away_abbrev + '_' + home_abbrev

    # moneyline
    model = 'xgboost_ML_no_odds_71.4%'
    file_path = os.path.join(model_directory, f'{model}.json')
    xgb_ml = xgb.Booster()
    xgb_ml.load_model(file_path)

    try:
        moneyline_result = results.loc[results['game_id']==game_id, 'winner'].item()
    except:
        moneyline_result = 'N/A'

    try:
        ml_predicted_proba = xgb_ml.predict(matrix)[0][1]
        winner_proba = max([ml_predicted_proba, 1-ml_predicted_proba]).item()
        moneyline = {'Winner': [home if ml_predicted_proba>0.5 else away if ml_predicted_proba<0.5 else 'Toss-Up'],
                     'Probabilities':[winner_proba],
                     'Result': moneyline_result}
    except:
        moneyline = {'Winner': 'NA',
                     'Probabilities':['N/A'],
                     'Result': moneyline_result}

    # over/under
    model = 'xgboost_OU_no_odds_60.8%'
    file_path = os.path.join(model_directory, f'{model}.json')
    xgb_ou = xgb.Booster()
    xgb_ou.load_model(file_path)
    
    try:
        result = results.loc[results['game_id']==game_id, 'total'].item()
        over_under_result = 'Over' if float(result)>float(total) else 'Under'
    except:
        over_under_result = 'N/A'
    
    try:
        ou_predicted_proba = xgb_ou.predict(matrix)[0][1]
        ou_proba = max([ou_predicted_proba, 1-ou_predicted_proba]).item()

        over_under = {'Over/Under': ['Over' if ou_predicted_proba>0.5 else 'Under'],
                      'Probability': [ou_proba],
                      'Result': over_under_result}
    except:
        over_under = {'Over/Under': 'N/A',
                      'Probability': ['N/A'],
                      'Result': over_under_result}
    
    print(moneyline)
    return game_id, moneyline, over_under