Spaces:
Runtime error
Runtime error
add language statistics, make inferring categorical for numeric types optional, make slider integer if df dtype is integer
Browse files- .gitignore +2 -1
- data/language_stats.parquet +3 -0
- filter_dataframe.py +27 -6
- pages/2_Language_Statistics.py +22 -0
- pages/3_Dataset_Statistics.py +0 -0
.gitignore
CHANGED
|
@@ -159,4 +159,5 @@ cython_debug/
|
|
| 159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
#.idea/
|
| 161 |
|
| 162 |
-
*.ipynb
|
|
|
|
|
|
| 159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
#.idea/
|
| 161 |
|
| 162 |
+
*.ipynb
|
| 163 |
+
*.code-workspace
|
data/language_stats.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e52fca5ff80ab2c16ba8bbd99244f7cbe5e2a988f45443fe48c1b2a176f98e9c
|
| 3 |
+
size 9087
|
filter_dataframe.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
|
| 2 |
import streamlit.components.v1 as components
|
| 3 |
import pandas as pd
|
|
@@ -7,14 +8,16 @@ from pandas.api.types import (
|
|
| 7 |
is_categorical_dtype,
|
| 8 |
is_datetime64_any_dtype,
|
| 9 |
is_numeric_dtype,
|
|
|
|
| 10 |
is_object_dtype,
|
| 11 |
)
|
| 12 |
-
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
| 13 |
"""
|
| 14 |
Adds a UI on top of a dataframe to let viewers filter columns
|
| 15 |
|
| 16 |
Args:
|
| 17 |
df (pd.DataFrame): Original dataframe
|
|
|
|
| 18 |
|
| 19 |
Returns:
|
| 20 |
pd.DataFrame: Filtered dataframe
|
|
@@ -45,17 +48,35 @@ def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 45 |
left, right = st.columns((1, 20))
|
| 46 |
left.write("↳")
|
| 47 |
# Treat columns with < 10 unique values as categorical
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
user_cat_input = right.multiselect(
|
| 50 |
f"Values for {column}",
|
| 51 |
df[column].unique(),
|
| 52 |
default=list(df[column].unique()),
|
| 53 |
)
|
| 54 |
df = df[df[column].isin(user_cat_input)]
|
| 55 |
-
elif
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
user_num_input = right.slider(
|
| 60 |
f"Values for {column}",
|
| 61 |
_min,
|
|
|
|
| 1 |
+
# https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
|
| 2 |
|
| 3 |
import streamlit.components.v1 as components
|
| 4 |
import pandas as pd
|
|
|
|
| 8 |
is_categorical_dtype,
|
| 9 |
is_datetime64_any_dtype,
|
| 10 |
is_numeric_dtype,
|
| 11 |
+
is_integer_dtype,
|
| 12 |
is_object_dtype,
|
| 13 |
)
|
| 14 |
+
def filter_dataframe(df: pd.DataFrame, numeric_as_categorical: bool = True) -> pd.DataFrame:
|
| 15 |
"""
|
| 16 |
Adds a UI on top of a dataframe to let viewers filter columns
|
| 17 |
|
| 18 |
Args:
|
| 19 |
df (pd.DataFrame): Original dataframe
|
| 20 |
+
numeric_as_categorical (bool, optional): Whether to treat numeric columns with low number of unique values as categorical. Defaults to True.
|
| 21 |
|
| 22 |
Returns:
|
| 23 |
pd.DataFrame: Filtered dataframe
|
|
|
|
| 48 |
left, right = st.columns((1, 20))
|
| 49 |
left.write("↳")
|
| 50 |
# Treat columns with < 10 unique values as categorical
|
| 51 |
+
low_nunique = df[column].nunique() < 10
|
| 52 |
+
is_categorical = is_categorical_dtype(df[column])
|
| 53 |
+
is_numeric = is_numeric_dtype(df[column])
|
| 54 |
+
|
| 55 |
+
treat_as_categorical = False
|
| 56 |
+
if is_categorical:
|
| 57 |
+
treat_as_categorical = True
|
| 58 |
+
elif low_nunique:
|
| 59 |
+
if is_numeric:
|
| 60 |
+
treat_as_categorical = numeric_as_categorical
|
| 61 |
+
else:
|
| 62 |
+
treat_as_categorical = True
|
| 63 |
+
|
| 64 |
+
if treat_as_categorical:
|
| 65 |
user_cat_input = right.multiselect(
|
| 66 |
f"Values for {column}",
|
| 67 |
df[column].unique(),
|
| 68 |
default=list(df[column].unique()),
|
| 69 |
)
|
| 70 |
df = df[df[column].isin(user_cat_input)]
|
| 71 |
+
elif is_numeric:
|
| 72 |
+
if is_integer_dtype(df[column]):
|
| 73 |
+
_min = int(df[column].min())
|
| 74 |
+
_max = int(df[column].max())
|
| 75 |
+
step = 1
|
| 76 |
+
else:
|
| 77 |
+
_min = float(df[column].min())
|
| 78 |
+
_max = float(df[column].max())
|
| 79 |
+
step = (_max - _min) / 100
|
| 80 |
user_num_input = right.slider(
|
| 81 |
f"Values for {column}",
|
| 82 |
_min,
|
pages/2_Language_Statistics.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from filter_dataframe import filter_dataframe
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@st.cache_data
|
| 7 |
+
def get_language_stats_df():
|
| 8 |
+
return pd.read_parquet("data/language_stats.parquet")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
st.set_page_config(page_title="Language Statistics", page_icon="📈")
|
| 13 |
+
|
| 14 |
+
st.markdown("# Language Statistics")
|
| 15 |
+
st.sidebar.header("Language Statistics")
|
| 16 |
+
st.write(
|
| 17 |
+
"""TODO: Description"""
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
df = get_language_stats_df()
|
| 21 |
+
|
| 22 |
+
st.dataframe(filter_dataframe(df, numeric_as_categorical=False))
|
pages/3_Dataset_Statistics.py
ADDED
|
File without changes
|