mms_benchmark / pages /4_Language_Typology.py
Szymon Woźniak
add results
abc36fe
raw
history blame
430 Bytes
import streamlit as st
import time
import numpy as np
import pandas as pd
from filter_dataframe import filter_dataframe
@st.cache_data
def get_typology_df():
return pd.read_csv("data/language_typology.tsv", sep="\t")
st.set_page_config(page_title="Language Typology", page_icon="📈")
st.markdown("# Language Typology")
st.write(
"""TODO: Description"""
)
df = get_typology_df()
st.dataframe(filter_dataframe(df))