File size: 1,977 Bytes
c2302bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from threading import Thread
from typing import Tuple, Generator

from optimum.bettertransformer import BetterTransformer
import streamlit as st
import torch
from torch.quantization import quantize_dynamic
from torch import nn, qint8
from transformers import T5ForConditionalGeneration, T5Tokenizer, TextStreamer, TextIteratorStreamer


@st.cache_resource(show_spinner=False)
def get_resources(quantize: bool = True, no_cuda: bool = False) -> Tuple[T5ForConditionalGeneration, T5Tokenizer, TextIteratorStreamer]:
    """
    """
    tokenizer = T5Tokenizer.from_pretrained("BramVanroy/ul2-base-dutch-simplification-mai-2023", use_fast=False)
    model = T5ForConditionalGeneration.from_pretrained("BramVanroy/ul2-base-dutch-simplification-mai-2023")

    model = BetterTransformer.transform(model, keep_original_model=False)
    model.resize_token_embeddings(len(tokenizer))

    if torch.cuda.is_available() and not no_cuda:
        model = model.to("cuda")
    elif quantize:  # Quantization not supported on CUDA
        model = quantize_dynamic(model, {nn.Linear, nn.Dropout, nn.LayerNorm}, dtype=qint8)

    model.eval()
    streamer = TextIteratorStreamer(tokenizer, decode_kwargs={"skip_special_tokens": True, "clean_up_tokenization_spaces": True})

    return model, tokenizer, streamer


def simplify(
        text: str,
        model: T5ForConditionalGeneration,
        tokenizer: T5Tokenizer,
        streamer: TextIteratorStreamer
) -> Generator:
    """
    """
    text = "[NLG] " + text

    encoded = tokenizer(text, return_tensors="pt")
    encoded = {k: v.to(model.device) for k, v in encoded.items()}
    gen_kwargs = {
        **encoded,
        "max_new_tokens": 128,
        "streamer": streamer,
    }

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()

        generated_text = ""
        for new_text in streamer:
            generated_text += new_text
            yield generated_text