Spaces:
Runtime error
Runtime error
File size: 8,095 Bytes
a99d343 e0413c6 cab2267 f44b506 a99d343 cab2267 879c1f7 cab2267 a99d343 b5c7bac e0413c6 acef008 4306cde 714e7bd 853c062 a99d343 b5c7bac a99d343 acef008 f44b506 4306cde f44b506 4306cde 418554b 4306cde 418554b 4306cde f44b506 4306cde acef008 4306cde acef008 4306cde f44b506 4306cde f44b506 4306cde f44b506 4306cde 6d51d70 f44b506 0bb6cb9 f44b506 6d51d70 4306cde f44b506 0bb6cb9 f44b506 3db8d6f 4306cde f44b506 0bb6cb9 f44b506 3db8d6f 4306cde f44b506 4306cde acef008 4306cde f44b506 4306cde f44b506 6983f8a 4306cde f44b506 4306cde 7fdebcb 1847e89 7fdebcb 1847e89 7fdebcb 1847e89 dce1749 1847e89 4306cde 1847e89 7fdebcb f44b506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import gradio as gr
from ultralytics import YOLOv10
import supervision as sv
import spaces
from huggingface_hub import hf_hub_download
import cv2
import tempfile
def download_models(model_id):
hf_hub_download("BoukamchaSmartVisions/Yolov10", filename=f"{model_id}", local_dir=f"./")
return f"./{model_id}"
box_annotator = sv.BoxAnnotator()
category_dict = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}
@spaces.GPU(duration=200)
def yolov10_inference(inputs):
image, model_id, image_size, conf_threshold, iou_threshold = inputs[1], inputs[2], inputs[3], inputs[4], inputs[5]
model_path = download_models(model_id)
model = YOLOv10(model_path)
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def yolov10_video_inference(inputs):
video, model_id, image_size, conf_threshold, iou_threshold = inputs[2], inputs[3], inputs[4], inputs[5], inputs[6]
model_path = download_models(model_id)
model = YOLOv10(model_path)
cap = cv2.VideoCapture(video)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
out_path = out.name
ret, frame = cap.read()
height, width, _ = frame.shape
writer = cv2.VideoWriter(out_path, fourcc, 30, (width, height))
while ret:
results = model(source=frame, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_frame = box_annotator.annotate(frame, detections=detections, labels=labels)
writer.write(annotated_frame)
ret, frame = cap.read()
cap.release()
writer.release()
return out_path
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image_or_video = gr.Radio(
label="Input Type",
choices=["Image", "Video"],
value="Image",
)
image = gr.Image(type="numpy", label="Image", visible=True)
video = gr.Video(label="Video", visible=False)
image_or_video.change(
lambda x: (gr.update(visible=x=="Image"), gr.update(visible=x=="Video")),
inputs=[image_or_video],
outputs=[image, video],
)
model_id = gr.Dropdown(
label="Model",
choices=[
"yolov10n.pt",
"yolov10s.pt",
"yolov10m.pt",
"yolov10b.pt",
"yolov10l.pt",
"yolov10x.pt",
],
value="yolov10m.pt",
)
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640,
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
yolov10_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
output_video = gr.Video(label="Annotated Video", visible=False)
def process_inputs(inputs):
if inputs[0] == "Image":
return yolov10_inference(inputs)
else:
return yolov10_video_inference(inputs)
yolov10_infer.click(
fn=process_inputs,
inputs=[
image_or_video,
image,
video,
model_id,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image, output_video],
)
gr.Examples(
examples=[
[
"Image",
"Animals_persones.jpg",
None,
"yolov10x.pt",
640,
0.25,
0.45,
],
[
"Image",
"collage-horses-other-pets-white.jpg",
None,
"yolov10m.pt",
640,
0.25,
0.45,
],
[
"Image",
"Ville.png",
None,
"yolov10b.pt",
640,
0.25,
0.45,
],
[
"Video",
None,
"sample_video.mp4",
"yolov10m.pt",
640,
0.25,
0.45,
],
],
fn=process_inputs,
inputs=[
image_or_video,
image,
video,
model_id,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image, output_video],
cache_examples=True,
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv10: Real-Time End-to-End Object Detection
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
Follow me for more!
<a href='https://github.com/hamdiboukamcha/' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/hamdi-boukamcha-437830146/' target='_blank'>Linkedin</a> | <a href='https://huggingface.co/BoukamchaSmartVisions' target='_blank'>HuggingFace</a>
</h3>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True)
|