File size: 8,095 Bytes
a99d343
 
 
e0413c6
cab2267
f44b506
 
a99d343
cab2267
879c1f7
cab2267
 
a99d343
b5c7bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0413c6
acef008
 
4306cde
714e7bd
853c062
a99d343
 
 
b5c7bac
a99d343
 
 
 
 
 
acef008
 
f44b506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4306cde
 
 
 
f44b506
 
 
 
 
 
 
 
 
 
 
 
 
 
4306cde
 
 
 
 
 
 
418554b
4306cde
 
418554b
4306cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f44b506
 
4306cde
acef008
 
 
 
 
 
4306cde
acef008
4306cde
f44b506
4306cde
f44b506
4306cde
 
 
 
 
f44b506
4306cde
 
 
 
6d51d70
f44b506
0bb6cb9
f44b506
6d51d70
 
 
 
 
4306cde
f44b506
0bb6cb9
f44b506
3db8d6f
4306cde
 
 
 
 
f44b506
0bb6cb9
f44b506
3db8d6f
4306cde
 
 
 
f44b506
 
 
 
 
 
 
 
 
4306cde
acef008
4306cde
f44b506
4306cde
f44b506
6983f8a
4306cde
 
 
 
f44b506
4306cde
 
 
7fdebcb
 
1847e89
7fdebcb
1847e89
 
 
 
 
7fdebcb
1847e89
 
dce1749
1847e89
 
4306cde
1847e89
 
7fdebcb
f44b506
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
from ultralytics import YOLOv10 
import supervision as sv
import spaces
from huggingface_hub import hf_hub_download
import cv2
import tempfile

def download_models(model_id):
    hf_hub_download("BoukamchaSmartVisions/Yolov10", filename=f"{model_id}", local_dir=f"./")
    return f"./{model_id}"
    
box_annotator = sv.BoxAnnotator()
category_dict = {
    0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
    6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
    11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
    16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
    22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
    27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
    32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
    36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
    40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
    46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
    51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
    56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
    61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
    67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
    72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
    77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}

@spaces.GPU(duration=200)
def yolov10_inference(inputs):
    image, model_id, image_size, conf_threshold, iou_threshold = inputs[1], inputs[2], inputs[3], inputs[4], inputs[5]
    model_path = download_models(model_id)
    model = YOLOv10(model_path)
    results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
    detections = sv.Detections.from_ultralytics(results)
    
    labels = [
        f"{category_dict[class_id]} {confidence:.2f}"
        for class_id, confidence in zip(detections.class_id, detections.confidence)
    ]
    annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)

    return annotated_image

def yolov10_video_inference(inputs):
    video, model_id, image_size, conf_threshold, iou_threshold = inputs[2], inputs[3], inputs[4], inputs[5], inputs[6]
    model_path = download_models(model_id)
    model = YOLOv10(model_path)

    cap = cv2.VideoCapture(video)
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
    out_path = out.name

    ret, frame = cap.read()
    height, width, _ = frame.shape
    writer = cv2.VideoWriter(out_path, fourcc, 30, (width, height))

    while ret:
        results = model(source=frame, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
        detections = sv.Detections.from_ultralytics(results)
        
        labels = [
            f"{category_dict[class_id]} {confidence:.2f}"
            for class_id, confidence in zip(detections.class_id, detections.confidence)
        ]
        annotated_frame = box_annotator.annotate(frame, detections=detections, labels=labels)

        writer.write(annotated_frame)
        ret, frame = cap.read()

    cap.release()
    writer.release()

    return out_path

def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image_or_video = gr.Radio(
                    label="Input Type",
                    choices=["Image", "Video"],
                    value="Image",
                )
                image = gr.Image(type="numpy", label="Image", visible=True)
                video = gr.Video(label="Video", visible=False)

                image_or_video.change(
                    lambda x: (gr.update(visible=x=="Image"), gr.update(visible=x=="Video")),
                    inputs=[image_or_video],
                    outputs=[image, video],
                )

                model_id = gr.Dropdown(
                    label="Model",
                    choices=[
                        "yolov10n.pt",
                        "yolov10s.pt",
                        "yolov10m.pt",
                        "yolov10b.pt",
                        "yolov10l.pt",
                        "yolov10x.pt",
                    ],
                    value="yolov10m.pt",
                )
                image_size = gr.Slider(
                    label="Image Size",
                    minimum=320,
                    maximum=1280,
                    step=32,
                    value=640,
                )
                conf_threshold = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.25,
                )
                iou_threshold = gr.Slider(
                    label="IoU Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.45,
                )
                yolov10_infer = gr.Button(value="Detect Objects")

            with gr.Column():
                output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
                output_video = gr.Video(label="Annotated Video", visible=False)

        def process_inputs(inputs):
            if inputs[0] == "Image":
                return yolov10_inference(inputs)
            else:
                return yolov10_video_inference(inputs)

        yolov10_infer.click(
            fn=process_inputs,
            inputs=[
                image_or_video,
                image,
                video,
                model_id,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image, output_video],
        )

        gr.Examples(
            examples=[
                [
                    "Image",
                    "Animals_persones.jpg",
                    None,
                    "yolov10x.pt",
                    640,
                    0.25,
                    0.45,
                ],
                [
                    "Image",
                    "collage-horses-other-pets-white.jpg",
                    None,
                    "yolov10m.pt",
                    640,
                    0.25,
                    0.45,
                ],
                [
                    "Image",
                    "Ville.png",
                    None,
                    "yolov10b.pt",
                    640,
                    0.25,
                    0.45,
                ],
                [
                    "Video",
                    None,
                    "sample_video.mp4",
                    "yolov10m.pt",
                    640,
                    0.25,
                    0.45,
                ],
            ],
            fn=process_inputs,
            inputs=[
                image_or_video,
                image,
                video,
                model_id,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image, output_video],
            cache_examples=True,
        )

gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv10: Real-Time End-to-End Object Detection
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        Follow me for more!
        <a href='https://github.com/hamdiboukamcha/' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/hamdi-boukamcha-437830146/' target='_blank'>Linkedin</a>  | <a href='https://huggingface.co/BoukamchaSmartVisions' target='_blank'>HuggingFace</a>
        </h3>
        """)
    with gr.Row():
        with gr.Column():
            app()

gradio_app.launch(debug=True)