File size: 9,774 Bytes
cff8c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Shared utility functions for OmniGlue."""

import math
from typing import Optional
import cv2
import numpy as np
import tensorflow as tf


def lookup_descriptor_bilinear(
    keypoint: np.ndarray, descriptor_map: np.ndarray
) -> np.ndarray:
  """Looks up descriptor value for keypoint from a dense descriptor map.

  Uses bilinear interpolation to find descriptor value at non-integer
  positions.

  Args:
    keypoint: 2-dim numpy array containing (x, y) keypoint image coordinates.
    descriptor_map: (H, W, D) numpy array representing a dense descriptor map.

  Returns:
    D-dim descriptor value at the input 'keypoint' location.

  Raises:
    ValueError, if kepoint position is out of bounds.
  """
  height, width = np.shape(descriptor_map)[:2]
  if (
      keypoint[0] < 0
      or keypoint[0] > width
      or keypoint[1] < 0
      or keypoint[1] > height
  ):
    raise ValueError(
        'Keypoint position (%f, %f) is out of descriptor map bounds (%i w x'
        ' %i h).' % (keypoint[0], keypoint[1], width, height)
    )

  x_range = [math.floor(keypoint[0])]
  if not keypoint[0].is_integer() and keypoint[0] < width-1:
    x_range.append(x_range[0] + 1)
  y_range = [math.floor(keypoint[1])]
  if not keypoint[1].is_integer() and keypoint[1] < height-1:
    y_range.append(y_range[0] + 1)

  bilinear_descriptor = np.zeros(np.shape(descriptor_map)[2])
  for curr_x in x_range:
    for curr_y in y_range:
      curr_descriptor = descriptor_map[curr_y, curr_x, :]
      bilinear_scalar = (1.0 - abs(keypoint[0] - curr_x)) * (
          1.0 - abs(keypoint[1] - curr_y)
      )
      bilinear_descriptor += bilinear_scalar * curr_descriptor
  return bilinear_descriptor


def soft_assignment_to_match_matrix(
    soft_assignment: tf.Tensor, match_threshold: float
) -> tf.Tensor:
  """Converts a matrix of soft assignment values to binary yes/no match matrix.

  Searches soft_assignment for row- and column-maximum values, which indicate
  mutual nearest neighbor matches between two unique sets of keypoints. Also,
  ensures that score values for matches are above the specified threshold.

  Args:
    soft_assignment: (B, N, M) tensor, contains matching likelihood value
      between features of different sets. N is number of features in image0, and
      M is number of features in image1. Higher value indicates more likely to
      match.
    match_threshold: float, thresholding value to consider a match valid.

  Returns:
    (B, N, M) tensor of binary values. A value of 1 at index (x, y) indicates
    a match between index 'x' (out of N) in image0 and index 'y' (out of M) in
    image 1.
  """

  def _range_like(x, dim):
    """Returns tensor with values (0, 1, 2, ..., N) for dimension in input x."""
    return tf.range(tf.shape(x)[dim], dtype=x.dtype)

  # TODO(omniglue): batch loop & SparseTensor are slow. Optimize with tf ops.
  matches = tf.TensorArray(tf.float32, size=tf.shape(soft_assignment)[0])
  for i in range(tf.shape(soft_assignment)[0]):
    # Iterate through batch and process one example at a time.
    scores = tf.expand_dims(soft_assignment[i, :], 0)  # Shape: (1, N, M).

    # Find indices for max values per row and per column.
    max0 = tf.math.reduce_max(scores, axis=2)  # Shape: (1, N).
    indices0 = tf.math.argmax(scores, axis=2)  # Shape: (1, N).
    indices1 = tf.math.argmax(scores, axis=1)  # Shape: (1, M).

    # Find matches from mutual argmax indices of each set of keypoints.
    mutual = tf.expand_dims(_range_like(indices0, 1), 0) == tf.gather(
        indices1, indices0, axis=1
    )

    # Create match matrix from sets of index pairs and values.
    kp_ind_pairs = tf.stack(
        [_range_like(indices0, 1), tf.squeeze(indices0)], axis=1
    )
    mutual_max0 = tf.squeeze(tf.squeeze(tf.where(mutual, max0, 0), 0))
    sparse = tf.sparse.SparseTensor(
        kp_ind_pairs, mutual_max0, tf.shape(scores, out_type=tf.int64)[1:]
    )
    match_matrix = tf.sparse.to_dense(sparse)
    matches = matches.write(i, match_matrix)

  # Threshold on match_threshold value and convert to binary (0, 1) values.
  match_matrix = matches.stack()
  match_matrix = match_matrix > match_threshold
  return match_matrix


def visualize_matches(
    image0: np.ndarray,
    image1: np.ndarray,
    kp0: np.ndarray,
    kp1: np.ndarray,
    match_matrix: np.ndarray,
    match_labels: Optional[np.ndarray] = None,
    show_keypoints: bool = False,
    highlight_unmatched: bool = False,
    title: Optional[str] = None,
    line_width: int = 1,
    circle_radius: int = 4,
    circle_thickness: int = 2,
    rng: Optional['np.random.Generator'] = None,
):
  """Generates visualization of keypoints and matches for two images.

  Stacks image0 and image1 horizontally. In case the two images have different
  heights, scales image1 (and its keypoints) to match image0's height. Note
  that keypoints must be in (x, y) format, NOT (row, col). If match_matrix
  includes unmatched dustbins, the dustbins will be removed before visualizing
  matches.

  Args:
    image0: (H, W, 3) array containing image0 contents.
    image1: (H, W, 3) array containing image1 contents.
    kp0: (N, 2) array where each row represents (x, y) coordinates of keypoints
      in image0.
    kp1: (M, 2) array, where each row represents (x, y) coordinates of keypoints
      in image1.
    match_matrix: (N, M) binary array, where values are non-zero for keypoint
      indices making up a match.
    match_labels: (N, M) binary array, where values are non-zero for keypoint
      indices making up a ground-truth match. When None, matches from
      'match_matrix' are colored randomly. Otherwise, matches from
      'match_matrix' are colored according to accuracy (compared to labels).
    show_keypoints: if True, all image0 and image1 keypoints (including
      unmatched ones) are visualized.
    highlight_unmatched: if True, highlights unmatched keypoints in blue.
    title: if not None, adds title text to top left of visualization.
    line_width: width of correspondence line, in pixels.
    circle_radius: radius of keypoint circles, if visualized.
    circle_thickness: thickness of keypoint circles, if visualized.
    rng: np random number generator to generate the line colors.

  Returns:
    Numpy array of image0 and image1 side-by-side, with lines between matches
    according to match_matrix. If show_keypoints is True, keypoints from both
    images are also visualized.
  """
  # initialize RNG
  if rng is None:
    rng = np.random.default_rng()

  # Make copy of input param that may be modified in this function.
  kp1 = np.copy(kp1)

  # Detect unmatched dustbins.
  has_unmatched_dustbins = (match_matrix.shape[0] == kp0.shape[0] + 1) and (
      match_matrix.shape[1] == kp1.shape[0] + 1
  )

  # If necessary, resize image1 so that the pair can be stacked horizontally.
  height0 = image0.shape[0]
  height1 = image1.shape[0]
  if height0 != height1:
    scale_factor = height0 / height1
    if scale_factor <= 1.0:
      interp_method = cv2.INTER_AREA
    else:
      interp_method = cv2.INTER_LINEAR
    new_dim1 = (int(image1.shape[1] * scale_factor), height0)
    image1 = cv2.resize(image1, new_dim1, interpolation=interp_method)
    kp1 *= scale_factor

  # Create side-by-side image and add lines for all matches.
  viz = cv2.hconcat([image0, image1])
  w0 = image0.shape[1]
  matches = np.argwhere(
      match_matrix[:-1, :-1] if has_unmatched_dustbins else match_matrix
  )
  for match in matches:
    pt0 = (int(kp0[match[0], 0]), int(kp0[match[0], 1]))
    pt1 = (int(kp1[match[1], 0] + w0), int(kp1[match[1], 1]))
    if match_labels is None:
      color = tuple(rng.integers(0, 255, size=3).tolist())
    else:
      if match_labels[match[0], match[1]]:
        color = (0, 255, 0)
      else:
        color = (255, 0, 0)
    cv2.line(viz, pt0, pt1, color, line_width)

  # Optionally, add circles to output image to represent each keypoint.
  if show_keypoints:
    for i in range(np.shape(kp0)[0]):
      kp = kp0[i, :]
      if highlight_unmatched and has_unmatched_dustbins and match_matrix[i, -1]:
        cv2.circle(
            viz,
            tuple(kp.astype(np.int32).tolist()),
            circle_radius,
            (255, 0, 0),
            circle_thickness,
        )
      else:
        cv2.circle(
            viz,
            tuple(kp.astype(np.int32).tolist()),
            circle_radius,
            (0, 0, 255),
            circle_thickness,
        )
    for j in range(np.shape(kp1)[0]):
      kp = kp1[j, :]
      kp[0] += w0
      if highlight_unmatched and has_unmatched_dustbins and match_matrix[-1, j]:
        cv2.circle(
            viz,
            tuple(kp.astype(np.int32).tolist()),
            circle_radius,
            (255, 0, 0),
            circle_thickness,
        )
      else:
        cv2.circle(
            viz,
            tuple(kp.astype(np.int32).tolist()),
            circle_radius,
            (0, 0, 255),
            circle_thickness,
        )
  if title is not None:
    viz = cv2.putText(
        viz,
        title,
        (5, 30),
        cv2.FONT_HERSHEY_SIMPLEX,
        1,
        (0, 0, 255),
        2,
        cv2.LINE_AA,
    )
  return viz