File size: 5,285 Bytes
cff8c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Wrapper for performing OmniGlue inference, plus (optionally) SP/DINO."""

import numpy as np
from omniglue import dino_extract
from omniglue import superpoint_extract
from omniglue import utils
import tensorflow as tf

DINO_FEATURE_DIM = 768
MATCH_THRESHOLD = 1e-3


class OmniGlue:
  # TODO(omniglue): class docstring

  def __init__(
      self,
      og_export: str,
      sp_export: str | None = None,
      dino_export: str | None = None,
  ) -> None:
    self.matcher = tf.saved_model.load(og_export)
    if sp_export is not None:
      self.sp_extract = superpoint_extract.SuperPointExtract(sp_export)
    if dino_export is not None:
      self.dino_extract = dino_extract.DINOExtract(dino_export, feature_layer=1)

  def FindMatches(self, image0: np.ndarray, image1: np.ndarray):
    """TODO(omniglue): docstring."""
    height0, width0 = image0.shape[:2]
    height1, width1 = image1.shape[:2]
    sp_features0 = self.sp_extract(image0)
    sp_features1 = self.sp_extract(image1)
    dino_features0 = self.dino_extract(image0)
    dino_features1 = self.dino_extract(image1)
    dino_descriptors0 = dino_extract.get_dino_descriptors(
        dino_features0,
        tf.convert_to_tensor(sp_features0[0], dtype=tf.float32),
        tf.convert_to_tensor(height0, dtype=tf.int32),
        tf.convert_to_tensor(width0, dtype=tf.int32),
        DINO_FEATURE_DIM,
    )
    dino_descriptors1 = dino_extract.get_dino_descriptors(
        dino_features1,
        tf.convert_to_tensor(sp_features1[0], dtype=tf.float32),
        tf.convert_to_tensor(height1, dtype=tf.int32),
        tf.convert_to_tensor(width1, dtype=tf.int32),
        DINO_FEATURE_DIM,
    )

    inputs = self._construct_inputs(
        width0,
        height0,
        width1,
        height1,
        sp_features0,
        sp_features1,
        dino_descriptors0,
        dino_descriptors1,
    )

    og_outputs = self.matcher.signatures['serving_default'](**inputs)
    soft_assignment = og_outputs['soft_assignment'][:, :-1, :-1]

    match_matrix = (
        utils.soft_assignment_to_match_matrix(soft_assignment, MATCH_THRESHOLD)
        .numpy()
        .squeeze()
    )

    # Filter out any matches with 0.0 confidence keypoints.
    match_indices = np.argwhere(match_matrix)
    keep = []
    for i in range(match_indices.shape[0]):
      match = match_indices[i, :]
      if (sp_features0[2][match[0]] > 0.0) and (
          sp_features1[2][match[1]] > 0.0
      ):
        keep.append(i)
    match_indices = match_indices[keep]

    # Format matches in terms of keypoint locations.
    match_kp0s = []
    match_kp1s = []
    match_confidences = []
    for match in match_indices:
      match_kp0s.append(sp_features0[0][match[0], :])
      match_kp1s.append(sp_features1[0][match[1], :])
      match_confidences.append(soft_assignment[0, match[0], match[1]])
    match_kp0s = np.array(match_kp0s)
    match_kp1s = np.array(match_kp1s)
    match_confidences = np.array(match_confidences)
    return match_kp0s, match_kp1s, match_confidences

  ### Private methods ###

  def _construct_inputs(
      self,
      width0,
      height0,
      width1,
      height1,
      sp_features0,
      sp_features1,
      dino_descriptors0,
      dino_descriptors1,
  ):
    inputs = {
        'keypoints0': tf.convert_to_tensor(
            np.expand_dims(sp_features0[0], axis=0),
            dtype=tf.float32,
        ),
        'keypoints1': tf.convert_to_tensor(
            np.expand_dims(sp_features1[0], axis=0), dtype=tf.float32
        ),
        'descriptors0': tf.convert_to_tensor(
            np.expand_dims(sp_features0[1], axis=0), dtype=tf.float32
        ),
        'descriptors1': tf.convert_to_tensor(
            np.expand_dims(sp_features1[1], axis=0), dtype=tf.float32
        ),
        'scores0': tf.convert_to_tensor(
            np.expand_dims(np.expand_dims(sp_features0[2], axis=0), axis=-1),
            dtype=tf.float32,
        ),
        'scores1': tf.convert_to_tensor(
            np.expand_dims(np.expand_dims(sp_features1[2], axis=0), axis=-1),
            dtype=tf.float32,
        ),
        'descriptors0_dino': tf.expand_dims(dino_descriptors0, axis=0),
        'descriptors1_dino': tf.expand_dims(dino_descriptors1, axis=0),
        'width0': tf.convert_to_tensor(
            np.expand_dims(width0, axis=0), dtype=tf.int32
        ),
        'width1': tf.convert_to_tensor(
            np.expand_dims(width1, axis=0), dtype=tf.int32
        ),
        'height0': tf.convert_to_tensor(
            np.expand_dims(height0, axis=0), dtype=tf.int32
        ),
        'height1': tf.convert_to_tensor(
            np.expand_dims(height1, axis=0), dtype=tf.int32
        ),
    }
    return inputs