import gradio as gr import numpy as np import spaces import torch import random from peft import PeftModel from diffusers import FluxControlPipeline, FluxTransformer2DModel from image_gen_aux import DepthPreprocessor MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Initialize models without moving to CUDA yet - following working version pipe = FluxControlPipeline.from_pretrained( "black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16 ) pipe.enable_attention_slicing() # Keep this as it's helpful processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf") @spaces.GPU def load_lora(lora_path): if not lora_path.strip(): return "Please provide a valid LoRA path" try: # Move to GPU within the wrapped function pipe.to("cuda") # Unload any existing LoRA weights first try: pipe.unload_lora_weights() except: pass # Load new LoRA weights pipe.load_lora_weights(lora_path) return f"Successfully loaded LoRA weights from {lora_path}" except Exception as e: return f"Error loading LoRA weights: {str(e)}" @spaces.GPU def unload_lora(): try: pipe.to("cuda") pipe.unload_lora_weights() return "Successfully unloaded LoRA weights" except Exception as e: return f"Error unloading LoRA weights: {str(e)}" @spaces.GPU def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) try: # Move pipeline to GPU within the wrapped function pipe.to("cuda") # Process control image control_image = processor(control_image)[0].convert("RGB") # Generate image image = pipe( prompt=prompt, control_image=control_image, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=torch.Generator("cuda").manual_seed(seed), ).images[0] return image, seed except Exception as e: return None, f"Error during inference: {str(e)}" css = """ @keyframes gradientMove { 0% { background-position: 0% 50%; } 50% { background-position: 100% 50%; } 100% { background-position: 0% 50%; } } body { background: black !important; margin: 0; min-height: 100vh; } body::before { content: ''; position: fixed; top: 0; left: 0; right: 0; bottom: 0; z-index: -1; background: linear-gradient(125deg, rgba(255,105,180,0.3), rgba(0,0,0,0.5)), url('data:image/svg+xml,'); filter: blur(70px); animation: gradientMove 15s ease infinite; background-size: 400% 400%; opacity: 0.8; } :root { --hot-pink: #FF69B4; --light-pink: #FFB6C6; --dark-pink: #FF1493; } #col-container { margin: 0 auto; max-width: 1200px; padding: 2rem; background: rgba(0, 0, 0, 0.85); border-radius: 15px; box-shadow: 0 0 20px rgba(255, 105, 180, 0.3); border: 2px solid var(--hot-pink); position: relative; z-index: 1; } .gr-box { background: var(--hot-pink) !important; border: 2px solid black !important; border-radius: 8px !important; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important; transition: all 0.3s ease !important; } .gr-box:hover { box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important; } .gr-button { background: var(--hot-pink) !important; border: 2px solid black !important; color: black !important; font-weight: 600 !important; transition: all 0.3s ease !important; } .gr-button:hover { background: var(--dark-pink) !important; box-shadow: 0 0 15px rgba(255, 255, 255, 0.5); transform: translateY(-2px); } .gr-input, .gr-input-label { background: var(--hot-pink) !important; border: 2px solid black !important; border-radius: 8px !important; color: black !important; transition: all 0.3s ease !important; } .gr-input::placeholder { color: rgba(0, 0, 0, 0.6) !important; } .gr-input:focus { box-shadow: 0 0 15px rgba(255, 255, 255, 0.3) !important; } .gr-form { gap: 1.5rem !important; } .gr-slider { accent-color: var(--hot-pink) !important; } .gr-slider-value { color: white !important; } .gr-checkbox { accent-color: var(--hot-pink) !important; } .gr-panel { background: var(--hot-pink) !important; border: 2px solid black !important; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2) !important; } .gr-accordion { border: 2px solid black !important; background: var(--hot-pink) !important; border-radius: 10px !important; margin-top: 1.5rem !important; } label, .gr-box label, .gr-accordion-title { color: black !important; font-weight: 600 !important; } .markdown { color: white !important; } .markdown a { color: var(--hot-pink) !important; text-decoration: none !important; transition: color 0.3s ease !important; } .markdown a:hover { color: var(--light-pink) !important; } .upload-box { border: 2px dashed var(--hot-pink) !important; background: rgba(0, 0, 0, 0.3) !important; transition: all 0.3s ease !important; } .upload-box:hover { border-color: var(--light-pink) !important; box-shadow: 0 0 15px rgba(255, 105, 180, 0.2) !important; } .generating { box-shadow: 0 0 20px rgba(255, 255, 255, 0.8) !important; } .progress-bar { background: var(--hot-pink) !important; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("""# FLUX.1 Depth [dev] with LoRA Support (note: clone this repo and run on free gpu, this required hf subscription) 12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) with gr.Row(): lora_path = gr.Textbox( label="HuggingFace LoRA Path", placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees", scale=3 ) load_lora_btn = gr.Button("Load LoRA", scale=1) unload_lora_btn = gr.Button("Unload LoRA", scale=1) lora_status = gr.Textbox(label="LoRA Status", interactive=False) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=True, max_lines=1, placeholder="Enter your prompt", container=True, ) run_button = gr.Button("Run", scale=0) with gr.Row(equal_height=True): with gr.Column(scale=1): control_image = gr.Image( label="Control Image", type="pil", elem_id="image-upload" ) with gr.Column(scale=1): result = gr.Image( label="Generated Result", elem_id="result-image" ) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): with gr.Column(scale=1): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox( label="Randomize seed", value=True ) with gr.Row(): with gr.Column(scale=1): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Column(scale=1): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=10, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) load_lora_btn.click( fn=load_lora, inputs=[lora_path], outputs=[lora_status] ) unload_lora_btn.click( fn=unload_lora, inputs=[], outputs=[lora_status] ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed] ) demo.launch()