File size: 5,688 Bytes
c70f6b6 8c6f026 0cea845 c70f6b6 16eb805 c70f6b6 9102b04 16eb805 9102b04 16eb805 9102b04 16eb805 9102b04 1d15b14 9102b04 c70f6b6 16eb805 c70f6b6 16eb805 c70f6b6 9102b04 c70f6b6 9102b04 ce1c2ea c70f6b6 8e62d24 c70f6b6 9102b04 c70f6b6 9102b04 c70f6b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
from peft import PeftModel
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from image_gen_aux import DepthPreprocessor
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize the pipeline and move it to GPU
pipe = FluxControlPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16
).to(device)
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
def load_lora(lora_path):
if not lora_path.strip():
return "Please provide a valid LoRA path"
try:
# Unload any existing LoRA weights first
try:
pipe.unload_lora_weights()
except:
pass
# Load new LoRA weights and move to the same device
pipe.load_lora_weights(lora_path)
# Ensure all model components are on the correct device
pipe.to(device)
return f"Successfully loaded LoRA weights from {lora_path}"
except Exception as e:
return f"Error loading LoRA weights: {str(e)}"
def unload_lora():
try:
pipe.unload_lora_weights()
# Ensure model is on correct device after unloading
pipe.to(device)
return "Successfully unloaded LoRA weights"
except Exception as e:
return f"Error unloading LoRA weights: {str(e)}"
@spaces.GPU
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024,
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
try:
# Process control image
control_image = processor(control_image)[0].convert("RGB")
# Generate image
image = pipe(
prompt=prompt,
control_image=control_image,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator(device=device).manual_seed(seed),
).images[0]
return image, seed
except Exception as e:
return None, f"Error during inference: {str(e)}"
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Depth [dev] with LoRA Support
12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
# LoRA controls
with gr.Row():
lora_path = gr.Textbox(
label="HuggingFace LoRA Path",
placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees"
)
load_lora_btn = gr.Button("Load LoRA")
unload_lora_btn = gr.Button("Unload LoRA")
lora_status = gr.Textbox(label="LoRA Status", interactive=False)
control_image = gr.Image(label="Upload the image for control", type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=10,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
# Event handlers
load_lora_btn.click(
fn=load_lora,
inputs=[lora_path],
outputs=[lora_status]
)
unload_lora_btn.click(
fn=unload_lora,
inputs=[],
outputs=[lora_status]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch() |