import gradio as gr import cv2 from ultralytics import YOLO model = YOLO('best.pt') path = [['pothole1.jpg'], ['pothole2.jpg'], ['pothole3.jpg'],['pothole4.jpg']] import cv2 def resize_image(image_path): # Read the image using OpenCV img = cv2.imread(image_path) # Resize the image to 512x512 resized_img = cv2.resize(img, (512, 512), interpolation = cv2.INTER_LINEAR) return resized_img def prediction1(image_path): # Read the image using OpenCV image = cv2.imread(image_path) outputs = model.predict(image_path) results = outputs[0].cpu().numpy() # Initialize maximum area and index max_area = 0 max_index = -1 # Calculate areas and find the box with the maximum area for i, det in enumerate(results.boxes.xyxy): width = det[2] - det[0] height = det[3] - det[1] area = width * height if area > max_area: max_area = area max_index = i # Draw bounding box for each detected pothole cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 255, 0), thickness=1, lineType=cv2.LINE_AA, ) # Add label to the bounding box with the maximum area if max_index != -1: det = results.boxes.xyxy[max_index] # Compute relative width and height relative_width = (det[2] - det[0]) / image.shape[1] relative_height = (det[3] - det[1]) / image.shape[0] # Draw relative width and height on the bounding box cv2.putText( image, f'W: {relative_width:.2f}, H: {relative_height:.2f}', (int(det[0]), int(det[1]) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=prediction1, inputs=inputs_image, outputs=outputs_image, title="Pothole detection", description="Detects potholes in images", #cache_examples=True, examples=[['pothole1.jpg'], ['pothole2.jpg'], ['pothole3.jpg'],['pothole4.jpg']] ) interface_image.launch()