Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
from ultralytics import YOLO | |
model = YOLO('best.pt') | |
path = [['pothole1.jpg'], ['pothole2.jpg'], ['pothole3.jpg'],['pothole4.jpg']] | |
import cv2 | |
def resize_image(image_path): | |
# Read the image using OpenCV | |
img = cv2.imread(image_path) | |
# Resize the image to 512x512 | |
resized_img = cv2.resize(img, (512, 512), interpolation = cv2.INTER_LINEAR) | |
return resized_img | |
def prediction1(image_path): | |
# Read the image using OpenCV | |
image = cv2.imread(image_path) | |
outputs = model.predict(image_path) | |
results = outputs[0].cpu().numpy() | |
# Initialize maximum area and index | |
max_area = 0 | |
max_index = -1 | |
# Calculate areas and find the box with the maximum area | |
for i, det in enumerate(results.boxes.xyxy): | |
width = det[2] - det[0] | |
height = det[3] - det[1] | |
area = width * height | |
if area > max_area: | |
max_area = area | |
max_index = i | |
# Draw bounding box for each detected pothole | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 255, 0), | |
thickness=1, | |
lineType=cv2.LINE_AA, | |
) | |
# Add label to the bounding box with the maximum area | |
if max_index != -1: | |
det = results.boxes.xyxy[max_index] | |
# Compute relative width and height | |
relative_width = (det[2] - det[0]) / image.shape[1] | |
relative_height = (det[3] - det[1]) / image.shape[0] | |
# Draw relative width and height on the bounding box | |
cv2.putText( | |
image, | |
f'W: {relative_width:.2f}, H: {relative_height:.2f}', | |
(int(det[0]), int(det[1]) - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.5, | |
(0, 0, 255), | |
1, | |
cv2.LINE_AA | |
) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
] | |
outputs_image = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=prediction1, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Pothole detection", | |
description="Detects potholes in images", | |
#cache_examples=True, | |
examples=[['pothole1.jpg'], ['pothole2.jpg'], ['pothole3.jpg'],['pothole4.jpg']] | |
) | |
interface_image.launch() | |